Lead removal from drinking water - development and validation of point-of-use treatment devices

2002 ◽  
Vol 2 (5-6) ◽  
pp. 209-216
Author(s):  
R. Sublet ◽  
A. Boireau ◽  
V.X. Yang ◽  
M.-O. Simonnot ◽  
C. Autugelle

Two lead removal water filters were developed to lower lead levels in drinking water below 10 μg.L-1 in order to meet the new regulation given by the European Directive 98-83, applicable in December 2013. An appropriate adsorbent was selected through a stringent research program among a wide range of media, and is composed of a synthetic zeolite and an activated carbon. Two prototypes were developed: the first is a faucet-mounted filter which contains a fixed bed of the adsorbent and a hollow fiber bundle, while the second is an under-sink cartridge made of a porous extruded block of carbon and adsorbent. Both are able to treat at least 1,000 litres of any water containing on average 100 to 150 μg Pb.L-1, by lowering the lead concentration below 10 μg.L-1. Once their safety considerations were addressed by an independent laboratory according to the French Ministry of Health recommendations, 20 prototypes were installed at consumers' taps in northeastern France. Their performance in terms of lead removal, HPC control and bad taste and odor reduction was followed for 6 months. This field testing program resulted in the validation of both prototypes which meet the new French Ministry of Health recommendations and assures that the filtered water is fully ED 98-83 compliant. Their commercialization will be launched first in France in middle 2002.

1992 ◽  
Vol 84 (2) ◽  
pp. 91-101 ◽  
Author(s):  
Roy W. Kuennen ◽  
Roy M. Taylor ◽  
Karl Van Dyke ◽  
Kevin Groenevelt

2016 ◽  
Vol 718 ◽  
pp. 72-76
Author(s):  
Surapol Padungthon ◽  
Nopphorn Chanthapon ◽  
Medhat Mohamed El-Moselhy ◽  
Pornsawai Praipipat

Ferric oxide nanoparticles are environmentally benign and can be selective toward lead, especially in neutral to mildly alkaline pH of groundwater. However, due to very fine particles and low mechanical strength, it prevents these materials to apply in point of use filter or large scale fixed-bed adsorption. In this study, polymeric gel cation exchanger, Purolite C100, supported ferric oxide nanoparticles, C100-Fe, was synthesized, characterized, and tested with challenging water according to NSF standards 53. From SEM-EDX studies, it can imply that high concentration of iron can be doped and distributed within the gel phase structure of the C100 approximately 22% by mass. The TEM micrographs confirm the size of hydrated ferric oxide fall into the nanometer range about 10-60 mm. The fixed-bed adsorption experiments demonstrated that C100-Fe can remove lead below the stringent standard of 0.05 mg/L up to 15,000 BVs, whereas the GAC, GAC-Fe, and C100 can treat the same test water only 1200, 1700, and 3500 BVs, respectively. The results confirm that C100-Fe can be efficiently substituted to the traditional GAC for lead removal in drinking water.


2020 ◽  
Vol 10 (28) ◽  
Author(s):  
Pushpita Kumkum ◽  
Sandeep Kumar

Background. Lead (Pb(II)) exposure from drinking water consumption is a serious concern due to its negative health effect on human physiology. A commercially available filter uses the adsorption potential of activated carbon for removing heavy metals like Pb(II). However, it has some constraints since it uses only surface area for the adsorption of these contaminants. Biochar produced via slow pyrolysis of biomass shows the presence of oxygen-containing functional groups on its surface that take part in the adsorption process, with higher removal potential compared to activated carbon. Objectives. The current study examined the adsorption kinetics and mechanisms of Pb(II) removing potential of biochar from water using a fixed-bed continuous flow adsorption system. Methods. The effect of initial Pb(II) concentration, mass of adsorbent (bed depth), and flow rate on adsorption potential were evaluated. The Adams-Bohart model, Thomas model, and Yoon-Nelson model were applied to the adsorption data. Results. The maximum removal efficiency of Pb(II) was 88.86 mg/g. The result illustrated that the Yoon-Nelson model is the best fit to analyze the adsorption phenomena of Pb(II) in a fixed-bed biochar column. Conclusions. The breakthrough data obtained from this study can be utilized to design a point of use filter that would be able to effectively remove Pb(II) from drinking water. Competing Interests. The authors declare no competing financial interests.


2019 ◽  
Vol 70 (7) ◽  
pp. 2330-2334
Author(s):  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Narcis Duteanu ◽  
Corneliu Mircea Davidescu ◽  
Iosif Hulka ◽  
...  

Arsenic content in groundwater�s present a wide range of concentration, ranging from hundreds of micrograms to thousands of micrograms of arsenic per litter, while the maximum permitted arsenic concentration established by World Health Organization (WHO) is 10 mg L-1. According to the WHO all people, regardless of their stage of development and their social economic condition, have the right to have access to adequate drinking water. The most efficient and economic technique used for arsenic removal is represented by adsorption. In order to make this remediation technique more affordable and environmentally friendly is important to new materials with advance adsorbent properties. Novelty of present paper is represented by the usage of a new adsorbent material obtained by physical - chemical modification of Amberlite XAD polymers using crown ethers followed by iron doping, due to well-known affinity of arsenic for iron ions. Present paper aims to test the obtained modified Amberlite polymer for arsenic removal from real groundwater by using adsorption in a fixed bed column, establishing in this way a mechanism for the adsorption process. During experimental work was studied the influence of competing ions from real water into the arsenic adsorption process.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


1997 ◽  
Vol 35 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Shigekazu Nakano ◽  
Tomoko Fukuhara ◽  
Masami Hiasa

It has been widely recognized that trihalomethanes (THMs) in drinking water pose a risk to human health. THMs can be removed to a certain extent by the conventional point-of-use (POU) unit which is composed of activated carbon (AC) and microfilter. But it's life on THMs is relatively shorter than on residual chlorine or musty odor. To extent the life of AC adsorber, pressure and thermal swing adsorption (PTSA) was applied by preferential regeneration of chloroform. PTSA was effective to remove THMs, especially chloroform. Adsorption isotherms of chloroform at 25 and 70°C showed a remarkable difference so that thermal swing was considered effective. Chloroform was also desorbed by reducing pressure. By vacuum heating at 70°C, chloroform was almost desorbed from AC and reversible adsorption was considered possible. A prototype of POU unit with PTSA was proposed. Regeneration mode would consist of dewatering, vacuum heating and cooling (backwashing). The unit was maintained in bacteriostatic condition and could be used for a long time without changing an AC cartridge.


2008 ◽  
Vol 42 (12) ◽  
pp. 4261-4267 ◽  
Author(s):  
Mark D. Sobsey ◽  
Christine E. Stauber ◽  
Lisa M. Casanova ◽  
Joseph M. Brown ◽  
Mark A. Elliott

Sign in / Sign up

Export Citation Format

Share Document