scholarly journals Optimal water allocation method based on the genetic algorithm for a system of a reservoir and two pumping stations

Author(s):  
Ling Zhuo ◽  
Jilin Cheng ◽  
Zhihao Gong

Abstract The subtropical monsoon climate zone is featured with the abundant water resources but uneven temporal and spatial distribution, so seasonal water shortages are frequent. In order to reduce the water shortage and water spill in this region, a nonlinear optimization model for the joint operation of a system of a reservoir and two pumping stations is developed in this paper. In this model, the water supply of reservoir and pumping volume of pumping stations in each period are two types of decision variables, which are subjected to the annual available water in the reservoir, water rights of the two pumping stations and the operation rule of reservoir. However, the modern intelligent algorithms may fail in dealing with constraints of if statements like the operation rule of reservoir in this model. In light of the shortcoming of the classical genetic algorithm, a modified genetic algorithm is proposed by comparing the different methods for dealing with constraints. The modified algorithm showed a better adaptability to the operation rule. The modified genetic algorithm may provide a reference for similar modern intelligent algorithms to solve optimal water resources allocation for multiple reservoirs and multiple pumping stations system.

1991 ◽  
Vol 23 (1-3) ◽  
pp. 11-18
Author(s):  
Tamon Ishibashi

Recently, problems of water shortage are becoming global in both developed and developing countries. This is due to tremendous population increases and also urbanization and industrialization. In this paper, countermeasures for future water shortages are described.


Author(s):  
Ruihuan Li ◽  
Yingli Chang ◽  
Zhaocai Wang

Abstract In order to distribute water resources reasonably, it is convenient to make full use of resources and produce high economic and social benefits. Taking the Dujiangyan irrigation area of China as an example, we discuss the idea of establishing and solving the optimal allocation model of water resources. Aiming at this area, a two-dimensional constraint model with the highest economic value, the minimum water shortage, the minimum underground water consumption and the necessary living water demand is established. In order to solve this model, we improve the multi-population genetic algorithm, extend the genetic optimization of the algorithm into two dimensions, take the population as the vertical dimension and the individual as the horizontal dimension, and transforms the cross genetic operator to copy the genetic operator and the mutation operator to only act on the vertical dimension, so as to optimize the allocation of such discrete objectives of water resources in the irrigation area with the particular model suitable for the region. The distribution results successfully control the water shortage rate of each area at a low level, which save the exploitation of groundwater to the maximum extent and produce high economic benefits. The improved algorithm proposed in this paper has a kind of strong optimization ability and provides a new solution for the optimization problem with multiple constraints.


Author(s):  
Ziyang Zhao ◽  
Hongrui Wang ◽  
Shuxin Gong ◽  
Cheng Wang

Abstract Water resources are the foundation of economic development, social progress and ecological security, and water shortage is the primary problem facing China. Water quotas have great practical significance for the resolution of water shortages to achieve sustainable use of water resources and sustainable development of the national economy. In this study, to analyse the problems and countermeasures of the water quota system in China, the water quota system progress domestically and abroad, the water quotas problem in China, and the countermeasures for the water quota problem are summarized. The data validity test, spatial correlation test and consistency test are used to test the rationality of water use quota. And the specific countermeasures are presented: improving the water quota system, defining its concept, and revising its scheme, etc. This study provides the support to standardize water quotas and implement the effective water conservation policies of China.


2015 ◽  
Vol 6 (1) ◽  
pp. 214-226 ◽  
Author(s):  
M. H. O. Al-Furaiji ◽  
U. F. A. Karim ◽  
D. C. M. Augustijn ◽  
B. I. H. Waisi ◽  
S. J. M. H. Hulscher

This paper presents results from the first study that focuses on water resources availability and demand for different purposes in the four oil-rich provinces of southern Iraq. The region accounts for 23% of the surface area and 18% of the country's population, but holds 88% of its oil. A water shortage of 430 Mm3/year for 2010 is estimated for this region where irrigation accounts for 81% of the total water demand. Dhi Qar is the largest agricultural producer and water consumer while Al Basrah and Al Muthanna have the largest water shortages among the four provinces. The interrelationship of energy–water production and utilization is discussed and the annual water balance for irrigation, industrial, domestic and livestock usage in the different provinces determined. On this basis recommendations are made for treating and utilizing the steadily increasing amounts of water produced from the oilfields to supplement the other sustainable water resources in that region.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2273
Author(s):  
Huanyu Chen ◽  
Ce Yang ◽  
Angyan Ren ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

(1) Background: As a halophytic species, Tamarix (Tamarix chinensis) can be used for saline soil rehabilitation in China. The reclamation and rehabilitation of saline soil depend on the water consumption of plants. However, whether water resources in saline soil can support the construction of Tamarix vegetation is still unknown. (2) Methods: In this study, we measured the transpiration (T) of Tamarix for 3 years using sap flow and the evaporation (E) for 1 year using a micro-lysimeter in Tamarix land. The evaporation values in 2016 and 2017 were estimated with the soil crop coefficients obtained in 2018. (3) Results: The evapotranspiration (ET) ranged from 514.2 to 573.8 mm and was greatly affected by the wind speed, VPD and groundwater table. Transpiration was the main form of water consumption in this region, accounting for 60.2% of the total evapotranspiration. Compared with bare land, vegetation construction increased soil moisture dissipation by 377.6 mm in 2018. According to on-site measurements and estimates, the water shortage in the dry year was 107.2 mm, and the residual water values in the normal year and wet year were 77.8 mm and 187.5 mm, respectively. May and September were months of widespread water shortages in different precipitation years. Although the cultivation of this plant increased water consumption, the groundwater table remained at approximately 0.5 m during the study year. (4) Conclusions: These results indicated that planting Tamarix in coastal saline soil was feasible for the reclamation and rehabilitation of saline soil. In the dry year (2017), the consumption of evapotranspiration exceeded the precipitation. The inverse occurred in the normal year (2016) and wet year (2018). Taken together, our findings showed that the water resources in the coastal saline soil of China could tolerate vegetation construction and laid a strong foundation for saline soil rehabilitation.


Author(s):  
Haoran Fu ◽  
Huahui Li

Abstract According to the research of reservoir water resources scheduling and distribution, the aim is to balance the water supply and demand in each period, and consider the total water supply and the annual external water withdrawal of the reservoir in each period as water rights. The decision-making variables are provided for the water supply of the reservoir in the paper, so that water demand of the water-receiving area can be better met to alleviate the water shortage at various stages and realize the effective use of water resources. Moreover, through the constraints of reservoir operation rules and other constraints, a mathematical model is established for optimal operation of water resources in the reservoir system. Meanwhile, optimized genetic algorithms are applied to solve the model according to the characteristics of the model. After simulation tests, compared with the traditional linear binary algorithm used in the reservoir, the improved genetic algorithm studied in the paper improves the accuracy of data calculation and data convergence, which proves that the research results of the paper provide theoretical and practical significance for improving the level of reservoir water resources management and solving the problem of optimal water resources scheduling.


2020 ◽  
Vol 20 (8) ◽  
pp. 3216-3232
Author(s):  
Nguyen Thi Thuy Linh ◽  
Frederick N.-F. Chou

Abstract To meet increasing water consumption with limited water resources, management approaches that transfer water between purposes must be improved for sustainable development. This entails an urgent requirement for appropriate water resources management within water–energy interaction if severe water shortage occurs occasionally. This study evaluates hydropower generation policies of a cascade reservoir system in the Be River Basin in terms of security of water supply and energy production. The Generalized Water Allocation Simulation Model (GWASIM) was applied to simulate the water use of a complex system of hydropower generation and water supply. Two water allocation scenarios and six alternatives defined by varying monthly generating hours were modeled and compared. The results demonstrate that a compromise between hydropower generation and water supply can be negotiated to reduce the severity of water shortages. Different monthly hours of hydropower generation among alternatives show an effect on improving power production and reliable water supply. This study provides overall insight into the performance of a multi-purpose cascade reservoir system. It will provide a foundation for improving future study of reservoir operations in meeting the increasing demands of water and energy in Vietnam.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 51-54
Author(s):  
J. Fettig

Abstract The structure of public water supply in Germany and the water resources used are briefly described. An overview over the legal requirements for drinking water is given, and the sources for contaminants are outlined. Then the multiple-barrier approach is discussed with respect to the resources groundwater and spring water, lake and reservoir water, and river water. Examples for treatment schemes are given and the principle of subsurface transport of river water as a first treatment step is described.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1527
Author(s):  
Mahmoud S. Hashem ◽  
Xue-Bin Qi

As the most important resource for life, water has been a central issue on the international agenda for several decades. Yet, the world’s supply of clean freshwater is steadily decreasing due to extensive agricultural demand for irrigated lands. Therefore, water resources should be used with greater efficiency, and the use of non-traditional water resources, such as Treated Wastewater (TW), should be increased. Reusing TW could be an alternative option to increase water resources. Thus, many countries have decided to turn wastewater into an irrigation resource to help meet urban demand and address water shortages. However, because of the nature of that water, there are potential problems associated with its use in irrigation. Some of the major concerns are health hazards, salinity build-up, and toxicity hazards. The objectives of this comprehensive literature review are to illuminate the importance of using TW in irrigation as an alternative freshwater source and to assess the effects of its use on soil fertility and other soil properties, plants, and public health. The literature review reveals that TW reuse has become part of the extension program for boosting water resource utilization. However, the uncontrolled application of such waters has many unfavorable effects on both soils and plants, especially in the long-term. To reduce these unfavorable effects when using TW in irrigation, proper guidelines for wastewater reuse and management should be followed to limit negative effects significantly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liying Liu

AbstractThis paper presents the assessment of water resource security in the Guizhou karst area, China. A mean impact value and back-propagation (MIV-BP) neural network was used to understand the influencing factors. Thirty-one indices involving five aspects, the water quality subsystem, water quantity subsystem, engineering water shortage subsystem, water resource vulnerability subsystem, and water resource carrying capacity subsystem, were selected to establish an evaluation index of water resource security. In addition, a genetic algorithm and back-propagation (GA-BP) neural network was constructed to assess the water resource security of Guizhou Province from 2001 to 2015. The results show that water resource security in Guizhou was at a moderate warning level from 2001 to 2006 and a critical safety level from 2007 to 2015, except in 2011 when a moderate warning level was reached. For protection and management of water resources in a karst area, the modes of development and utilization of water resources must be thoroughly understood, along with the impact of engineering water shortage. These results are a meaningful contribution to regional ecological restoration and socio-economic development and can promote better practices for future planning.


Sign in / Sign up

Export Citation Format

Share Document