scholarly journals Groundwater quality assessment for irrigation use in the Godavari delta region of east coast India using IRWQI and GIS

Author(s):  
K. Nageswara Rao ◽  
P. Swarna Latha ◽  
P.V. Ramesh Kumar

Abstract The present work was carried out in the deltaic region of the river Godavari in Coastal Andhra Pradesh of Southern India to evaluate the status of groundwater quality for irrigation. Groundwater is predominantly used in these productive agricultural fields. Saline water intrusion in fresh groundwater aquifers was recorded in the study area which is mainly due to the excess withdrawal of groundwater. A total of 80 groundwater samples were analyzed for various physical and chemical parameters using standard chemical procedures. The groundwater mainly represents sodium-chloride type which exhibits the mixing of fresh water with the saline water. The high correlation between Na+-Cl− and Mg2+-HCO3− explained that the intermixing of aquifer waters and the leaching of secondary salts. The mechanisms of groundwater have been shown mainly evaporation-fractional crystallization process. The irrigation water quality index was calculated by using different quality indices such as Na%, SAR, RSBC, PI, MH, KR, PS, Cl−:HCO3−, Mg2+:Ca2+, and Na+:Ca2+ to estimate the suitability of groundwater quality for irrigation. Spatial distribution maps were prepared using raster interpolation in GIS. The assessment revealed that the areas covering 67.6% of electrical conductivity, 100% of total dissolved solids, 57.5% of percent sodium, 21.3% of residual sodium bicarbonate, 66.3% of permeable index, 16.3% of magnesium hazard, 65% of Kelly's ratio, 100% of potential salinity were required severe to moderate restrictions. Overall, the groundwater in the study region showed potential salinity due to geogenic and anthropogenic activities thus it must be monitored for sustainable agriculture.

2018 ◽  
Vol 7 (3.34) ◽  
pp. 72
Author(s):  
D Sivakumar ◽  
S Govindasami ◽  
B Raghul Raj ◽  
C Gowdham ◽  
V M. Ragothaman

The study focused to assess the groundwater in Madhavaram, Chennai, Tamil Nadu, for irrigational purposes. Irrigation indices like SAR, SSP, PI and KR was determined in each groundwater sample to identify its irrigational suitability. This study further envisaged that these groundwater aquifers have low Sodium adsorption ratio and hence groundwater is fit for irrigation, while residual sodium bicarbonate and Kelly’s ratio values indicated that majority of these aquifer have water of marginal to harmful quality against irrigation. The dominance pattern of cations in the studied ground water was in the order of Na > Ca > Mg > K and the sequence of anionic dominance was as follows: Cl > HCO3 > SO4. All 20 wells fall under the excellent category of SAR. SSP values of groundwater range from 49 to 71 and indicated that 15 wells are under permissible and 5 wells are under doubtful classification.  PI value indicated that groundwater is unsuitable against irrigation.  The KR indicated that groundwater quality in 18 wells is not fit for irrigation.  Hence, necessary pre-treatment methodology is to be adopted for utilizing groundwater for irrigation purpose. 


Author(s):  
Ankit N. Chaudhari ◽  
Darshan J. Mehta ◽  
Neeraj D. Sharma

Abstract Groundwater quality is a major problem for humanity since it is closely related to human health. The flow of seawater into freshwater aquifers is known as saltwater intrusion, and it can lead to groundwater quality contamination, including drinking water. Due to the extremely severe hydraulic interface between groundwater and seawater, saltwater intrusion can happen naturally in coastal aquifers. The aim of the study is to examine the status of seawater intrusion within the study region of the South-West zone of Surat city, Gujarat. The present study evaluates Groundwater Quality Index using a weighted arithmetic method including various chemical ions. The South-West zone of Surat city is located along the coast; seawater infiltration has a significant impact on the groundwater in the state. The conceptual model will be developed and analyzed using MODFLOW to analyze the effects of seawater intrusion analysis. The model domain is characterized by three hydro-stratographic layers and covers an area of approximately 110 km2 in a 400 m × 400 m grid size. An analytical study with MODFLOW would be carried out for three-dimensional groundwater flows with species of solute transport. This study would help profile the study area regarding Groundwater quality.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Thilagavathi Rajendiran ◽  
Chidambaram Sabarathinam ◽  
Thivya Chandrasekar ◽  
Banajarani Panda ◽  
Mahalakshmi Mathivanan ◽  
...  

AbstractIn recent years, the extraction of groundwater (GW) in coastal aquifers has rendered the fragile aquifers more saline due to the sea water intrusion. Groundwater from the coastal aquifers of the Pudhucherry region were sampled to study the process of salinization. An integrated approach was adopted to identify the salinization process, by coordinating the results of borehole geophysics, rainfall pattern, water level variation, hydrochemical characters and multivariate statistical analysis. A total of 136 groundwater samples were collected during two different seasons, southwest monsoon (SWM) and northeast monsoon (NEM). The major cations and anions were analyzed adopting standard procedures. Resistivity and litholog indicate that the southeastern (SE) part of the study region has lower resistivity than in north. Based on electrical conductivity (EC) and total dissolved solids (TDS) values, most of the samples are potable, except for few samples from southeastern region. The study results indicated that higher values of Na, EC, K, SO4, Mg and Cl were observed during NEM, indicating leaching of salt into the aquifer and ion exchange process. The predominant hydrochemical facies of groundwater was Na-Cl and Ca–Mg–Cl type reflecting the saline water and the mixing process of saltwater and fresh groundwater, respectively. Though more number of samples with higher EC was noted in NEM, the results of PCA and correlation analysis indicate the predominance of leaching of salts and intense agricultural activities. The process of sea water intrusion was observed to be dominant during SWM.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1847 ◽  
Author(s):  
Javed Mallick ◽  
Chander Singh ◽  
Mohammed AlMesfer ◽  
Anand Kumar ◽  
Roohul Khan ◽  
...  

Saudi Arabia is an arid country with very limited water resources. The absence of surface water bodies along with erratic rainfall renders groundwater as the most reliable source of potable water in arid and semi-arid regions globally. Groundwater quality is determined by aquifer characteristics regional geology and it is extensively influenced by both natural and anthropogenic activities. In the recent past, several methodologies have been adopted to analyze the quality of groundwater and associated hydro-geochemical process i.e., multivariate statistical analysis, geochemical modelling, stable isotopes, a redox indicator, structural equation modelling. In the current study, statistical methods combined with geochemical modelling and conventional plots have been used to investigate groundwater and related geochemical processes in the Aseer region of Saudi Arabia. A total of 62 groundwater samples has been collected and analyzed in laboratory for major cations and anions. Groundwater in the study region is mostly alkaline with electrical conductivity ranging from 285–3796 μS/cm. The hydro-geochemical characteristics of groundwater are highly influenced by extreme evaporation. Climatic conditions combined with low rainfall and high temperature have resulted in a highly alkaline aquifer environment. Principal component analysis (PCA) yielded principal components explaining 79.9% of the variance in the dataset. PCA indicates ion exchange, soil mineralization, dissolution of carbonates and halite are the major processes governing the groundwater geochemistry. Groundwater in this region is oversaturated with calcite and dolomite while undersaturated with gypsum and halite which suggests dissolution of gypsum and halite as major process resulting into high chloride in groundwater. The study concludes that the combined approach of a multivariate statistical technique, conventional plots and geochemical modelling is effective in determining the factors controlling the groundwater quality.


Author(s):  
Robert Nelson ◽  
Joonghyeok Heo

This study evaluates the groundwater qualities and environmental changes to obtain information on the groundwater contamination in the Permian Basin, Texas. Coupled with the U.S. government’s open data, these analyses can identify regions where environmental change could have affected groundwater quality. A total of thirty-six wells were selected within the six counties: Andrews, Martin, Ector, Midland, Crane, and Upton. Spatial distribution maps were created for six different parameters: pH, total dissolved solids (TDS), chloride, fluoride, nitrate, and arsenic. Total groundwater quality maps incorporate all the contaminants and denote regions of poor, medium, and optimum conditions. To identify spatial changes in groundwater quality, maps were separated into two different time intervals, 1992–2005 and 2006–2019. We found that groundwater contamination resulted primarily from the mobilization of the contaminant from anthropogenic activities such as chemical fertilizers, oil and gas developments. Overall, groundwater quality decreased during the study period from 1992 to 2019 as population and urban growth began to develop in the Permian Basin. This study contributes on understanding of the response of groundwater quality associated with environmental change in the Permian Basin. Therefore, this research provides important information for groundwater managements in developing plans for the use of water resource in the future.


Author(s):  
Robert Nelson ◽  
Joonghyeok Heo

This study evaluates spatial analyses of groundwater quality and environmental changes to obtain information on the groundwater contamination in the Permian Basin, Texas. Coupled with the U.S. government’s open data, these analyses can identify regions where environmental change could have potentially effected groundwater quality. A total of thirty-six wells were selected within the six counties: Andrews, Martin, Ector, Midland, Crane, and Upton. Spatial distribution maps were created for six different parameters: pH, total dissolved solids (TDS), chloride, fluoride, nitrate, and arsenic. Total groundwater quality maps incorporate all the contaminants and denote regions of poor, medium, and optimum conditions. To identify spatial changes in groundwater quality, maps were separated into two different time intervals, 1992-2005 and 2006-2019. We found that groundwater contamination resulted primarily from the mobilization of the contaminant from natural sources or anthropogenic activities such as chemical fertilizers. Overall, groundwater quality decreased during the study period from 1992 to 2019 as population and urban growth began to develop in the Permian Basin. This study contributes on understanding of the response of groundwater quality associated with environmental change in the Permian Basin. Therefore, this research provides important information for groundwater managements in developing plans for the use of water resource in the future for Texas.


2020 ◽  
Vol 3 (1) ◽  
pp. 22-36 ◽  
Author(s):  
Shankar Karuppannan ◽  
Nafyad Serre Kawo

Assessment of groundwater quality is vital for the sustainable use of the resources for domestic and agricultural purposes. In this study spatial variation of physicochemical parameters were analyzed for Northeast Adama Town. Water Quality Index (WQI) and irrigation indices were used to determine the suitability of groundwater for drinking and irrigation purposes, respectively. Further, the physical-chemical results were compared with the Ethiopian standards and the World Health Organization (WHO) standards for drinking and public health. Using GIS interpolation methods in Arc GIS 10.3.1, spatial distribution maps of pH, TDS, EC, Cl−, HCO32−, SO42−, Ca2+, Mg2+, Na+ and K+, RSC, SAR, Na% were prepared. Results indicated that except ASTU well 2, all samples are below the desirable limits of WHO. The WQI results indicated that 85% of samples and 15% of samples were in good and poor categories, respectively. Irrigation indices show that the most groundwater samples have excellent water classes, indicating that they are suitable for irrigation purposes.


2020 ◽  
Vol 12 (1) ◽  
pp. 203-219
Author(s):  
Wei Li ◽  
Xiaohong Chen ◽  
Linshen Xie ◽  
Gong Cheng ◽  
Zhao Liu ◽  
...  

AbstractGroundwater chemical evolution is the key to ensuring the sustainability of local society and economy development. In this study, four river sections and 59 groundwater wells are investigated in the Longgang River (L.R.) basin in South China. Comprehensive hydrochemical analysis methods are adopted to determine the dominant factors controlling the chemical evolution of the local phreatic groundwater and the potential impact of human activities on groundwater quality. The results indicate that the ionic composition of the local phreatic groundwater is dominated by Ca2+ (0.9–144.0 mg/L), HCO3− (4.4–280.0 mg/L), and SO42− (1.0–199.0 mg/L). Ca–Mg–HCO3, Ca–Na–HCO3, and Na–Ca–HCO3 are the major groundwater hydrochemical facies. Water–rock interactions, such as the dissolution of calcite and dolomite, are the primary source of the major ions in the local groundwater. Cation-exchange reaction has its effects on the contents of Ca2+, Mg2+, and Na+. Ammonia concentration of the sampling sections in the L.R. increases from 0.03 to 2.01 mg/L along the flow direction. Groundwater nitrate in the regions of the farmland is attributed to the lowest level of the groundwater quality standards of China, while the same test results are obtained for heavy metals in the industrial park and landfill, suggesting a negative impact of the anthropogenic activities on the local phreatic groundwater quality.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1321 ◽  
Author(s):  
Muhammad Aleem ◽  
Cao Shun ◽  
Chao Li ◽  
Arslan Aslam ◽  
Wu Yang ◽  
...  

The industrial augmentation and unguided anthropogenic activities contaminate water sources in most parts of the world especially in developing countries like Pakistan. High concentration of pollutants in groundwater affects human, soil, and crop health badly. The present study was conducted to investigate groundwater quality for drinking and irrigation purposes in an industrial zone of Pakistan. A GIS tool was used to investigate the spatial distribution of different physico-chemical parameters. In this study, the average results exceeding World Health Organization (WHO) and National Environmental Quality Standards (NEQS) were found for pH 7.84, total dissolved solids (TDS) 1492 mg/L, phosphate 0.51 mg/L, dissolved oxygen (DO) 9.92% saturation, F-coli 6.48 colonies/100 mL, Na+ 366 mg/L, HCO3− 771 mg/L, sulfate 251 mg/L, chlorides 427 mg/L, total hardness (as CaCO3) 292 mg/L, electrical conductivity (EC) 2408 μS/cm, iron (Fe) 0.48 mg/L, chrome (Cr) 0.50 mg/L, arsenic (As) 0.04 mg/L, total phosphorus (TP) 0.17 mg/L, sodium adsorption ratio (SAR) 9.76 (in meq/L), residual sodium carbonate (RSC) 9.28 meq/L, % ion balance 14.4 (in meq/L), percentage sodium ion (% Na+) concentration 58.9 meq/L, and water quality index (WQI) 69.0. The trend of cations and anions were (in meq/L) Na > Mg > Ca > K and HCO3 > Cl > CO3 > SO4 respectively. Although the results of the present study showed poor conditions of the groundwater for drinking as WQI but and irrigation purposes as SAR, it needs to improve some more conditions for the provision of safe drinking water and irrigation water quality.


Sign in / Sign up

Export Citation Format

Share Document