Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate

2006 ◽  
Vol 53 (4-5) ◽  
pp. 263-272 ◽  
Author(s):  
T.H. Lee ◽  
I.G. Byun ◽  
Y.O. Kim ◽  
I.S. Hwang ◽  
T.J. Park

An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

Author(s):  
R. Polanský ◽  
J. Pihera ◽  
J. Komárek ◽  
R. Pavlica ◽  
P. Prosr ◽  
...  

2013 ◽  
Vol 15 (4) ◽  
pp. 474-484 ◽  

<p>The unintended release of hydrocarbons into the environment can negatively impact human and animal health, and could further change the characteristics of soils. The aim of the present work was to investigate the rate of biodegradation at 10 and 20% diesel fuel in contaminated soil amended with 10% of three different organic wastes (tea leaf, soy cake, and potato skin) for a period of 126-days. 82 and 25% oil loss was recorded in soil amended with soy cake at 10% and 20 % oil pollution, respectively. Diesel fuel utilizing bacteria counts were high in all organic wastes amended treatments, ranging from 150&times;106 to 176 &times;106 CFU g-1 of soil, compared with the unamended control soil which gave 23 &times;106 CFU g-1. Dehydrogenase activity in soil was markedly enhanced by the application of organic wastes. Diesel oil composition monitored by GC/MS indicated complete degradation of n-C9 &ndash; C12. First-order kinetic model showed that among the three organic wastes used, soy cake had the highest biodegradation rate constant of 0.153 day&minus;1 at 10% oil pollution, while biodegradation rate was 0.033 day&minus;1 at 20% oil pollution. The results showed there is potential for soy cake, potato skin and tea leaf to enhance biodegradation of diesel in contaminated soil.</p>


2017 ◽  
pp. 1001-1008
Author(s):  
Ana Paola Vilches ◽  
Dan Bylund ◽  
Anders Jonsson

The contamination of soils by petroleum hydrocarbons, such as diesel fuel, has since many years been a serious environmental problem. Treatment of contaminated areas is a concern for governments and environmental authorities in several countries and efforts have been done with the purpose to eliminate this problem. Different methods have been tested and today the most common technique involves the excavation and transportation of contaminated soil to special treatment facilities. In earlier studies we have demonstrated the effect of adding organic amendments, such as fermented whey, on the biodegradation of n-alkanes in diesel contaminated soil. Non-fermented sweet whey also proved significantly to enhance the biodegradation of an aromatic substance (phenanthrene) in contaminated soil. The current paper presents the results of an in-situ field test at a former gas station in the north of Sweden. In parallel to the field study, biodegradation profiles were monitored under controlled laboratory conditions by taking soil samples from the contaminated site and spike them with diesel fuel. The experiments were carried out by adding whey and mineral nutrients (NPK) to the test area and to the laboratory samples, and monitor the degradation of hydrocarbons by gas chromatographic analysis of extracted soil samples. Significant effects on the degradation rates were achieved in the laboratory tests. For the in-situ test, however, no such positive effects could be registered.


1997 ◽  
Vol 59 (2-3) ◽  
pp. 169-176 ◽  
Author(s):  
R. Boopathy ◽  
D.L. Widrig ◽  
J.F. Manning

Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


2021 ◽  
Vol 109 (4) ◽  
pp. 243-260 ◽  
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract A new setup named Fast On-line Reaction Apparatus (FORA) is presented which allows for the efficient investigation and optimization of metal carbonyl complex (MCC) formation reactions under various reaction conditions. The setup contains a 252Cf-source producing short-lived Mo, Tc, Ru and Rh isotopes at a rate of a few atoms per second by its 3% spontaneous fission decay branch. Those atoms are transformed within FORA in-situ into volatile metal carbonyl complexes (MCCs) by using CO-containing carrier gases. Here, the design, operation and performance of FORA is discussed, revealing it as a suitable setup for performing single-atom chemistry studies. The influence of various gas-additives, such as CO2, CH4, H2, Ar, O2, H2O and ambient air, on the formation and transport of MCCs was investigated. O2, H2O and air were found to harm the formation and transport of MCCs in FORA, with H2O being the most severe. An exception is Tc, for which about 130 ppmv of H2O caused an increased production and transport of volatile compounds. The other gas-additives were not influencing the formation and transport efficiency of MCCs. Using an older setup called Miss Piggy based on a similar working principle as FORA, it was additionally investigated if gas-additives are mostly affecting the formation or only the transport stability of MCCs. It was found that mostly formation is impacted, as MCCs appear to be much less sensitive to reacting with gas-additives in comparison to the bare Mo, Tc, Ru and Rh atoms.


Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Toni Wendler ◽  
Torsten Prietzel ◽  
Robert Möbius ◽  
Jean-Pierre Fischer ◽  
Andreas Roth ◽  
...  

Abstract Background All current total hip arthroplasty (THA) systems are modular in design. Only during the operation femoral head and stem get connected by a Morse taper junction. The junction is realized by hammer blows from the surgeon. Decisive for the junction strength is the maximum force acting once in the direction of the neck axis, which is mainly influenced by the applied impulse and surrounding soft tissues. This leads to large differences in assembly forces between the surgeries. This study aimed to quantify the assembly forces of different surgeons under influence of surrounding soft tissue. Methods First, a measuring system, consisting of a prosthesis and a hammer, was developed. Both components are equipped with a piezoelectric force sensor. Initially, in situ experiments on human cadavers were carried out using this system in order to determine the actual assembly forces and to characterize the influence of human soft tissues. Afterwards, an in vitro model in the form of an artificial femur (Sawbones Europe AB, Malmo, Sweden) with implanted measuring stem embedded in gelatine was developed. The gelatine mixture was chosen in such a way that assembly forces applied to the model corresponded to those in situ. A study involving 31 surgeons was carried out on the aforementioned in vitro model, in which the assembly forces were determined. Results A model was developed, with the influence of human soft tissues being taken into account. The assembly forces measured on the in vitro model were, on average, 2037.2 N ± 724.9 N, ranging from 822.5 N to 3835.2 N. The comparison among the surgeons showed no significant differences in sex (P = 0.09), work experience (P = 0.71) and number of THAs performed per year (P = 0.69). Conclusions All measured assembly forces were below 4 kN, which is recommended in the literature. This could lead to increased corrosion following fretting in the head-neck interface. In addition, there was a very wide range of assembly forces among the surgeons, although other influencing factors such as different implant sizes or materials were not taken into account. To ensure optimal assembly force, the impaction should be standardized, e.g., by using an appropriate surgical instrument.


Sign in / Sign up

Export Citation Format

Share Document