Improving calibration of two key parameters in Hydrologic Engineering Center hydrologic modelling system, and analysing the influence of initial loss on flood peak flows

2013 ◽  
Vol 68 (12) ◽  
pp. 2718-2724 ◽  
Author(s):  
Musheng Lin ◽  
Xingwei Chen ◽  
Ying Chen ◽  
Huaxia Yao

Parameter calibration is a key and difficult issue for a hydrological model. Taking the Jinjiang Xixi watershed of south-east China as the study area, we proposed methods to improve the calibration of two very sensitive parameters, Muskingum K and initial loss, in the Hydrologic Engineering Center hydrologic modelling system (HEC-HMS) model. Twenty-three rainstorm flood events occurring from 1972 to 1977 were used to calibrate the model using a trial-and-error approach, and a relationship between initial loss and initial discharge for these flood events was established; seven rainstorm events occurring from 1978 to 1979 were used to validate the two parameters. The influence of initial loss change on different return-period floods was evaluated. A fixed Muskingum K value, which was calibrated by assuming a flow wave velocity at 3 m/s, could be used to simulate a flood hydrograph, and the empirical power-function relationship between initial loss and initial discharge made the model more applicable for flood forecasting. The influence of initial loss on peak floods was significant but not identical for different flood levels, and the change rate of peak floods caused by the same initial loss change was more remarkable when the return period increased.

2020 ◽  
Author(s):  
Maria Staudinger ◽  
Reinhard Furrer ◽  
Daniel Viviroli

<p>To assess the safety of dams, design floods are typically used as a basis. Of particular interest are events with a return period of 1’000 years and even rarer events derived from that with help of simple return period conversion factors given by design codes. However, both the peaks and even more the flood volumes of such rare events are subject to large uncertainties due to limited length and spatial coverage of gauge records. Bivariate approaches can help reduce the uncertainty related to the flood volumes. Nevertheless, both univariate and bivariate approaches require long-term observations on which the return periods of flood events can be calculated.</p><p>In this study, we make use of very long simulated hydrographs in hourly resolution for Swiss catchments (scale range: ~300–18’000 km²). The hydrographs span about 300’000 years each and stem from a hydro-meteorological modelling chain starting with a stochastic multi-site weather generator. With these hydrographs, we develop a framework to characterize design floods through a realistic hydrograph using functional data analysis as well as hydrographs that envelope 50%, say, of the most central observations (corresponding to the 25% and 75% quantiles in a univariate setting).</p><p>In a first step, we assigned the simulated annual maximum flood events to return period classes of 100, 1000 and 10000 years. We then built clusters of similar events within each class using functional clustering. Here we explore some of the possibilities of the approach and in particular show how sensitive the functional clustering is to the choice 1) of event characterization (peak only, flood peak and volume, flood volume given a minimum flood peak), and 2) to the separation of event and baseflow of the selected events in the bivariate case and 3) to the different functional latent mixture models that are applied within the functional clustering.</p>


2020 ◽  
Vol 12 (24) ◽  
pp. 4183
Author(s):  
Emmanouil Andreadakis ◽  
Michalis Diakakis ◽  
Emmanuel Vassilakis ◽  
Georgios Deligiannakis ◽  
Antonis Antoniadis ◽  
...  

The spatial and temporal scale of flash flood occurrence provides limited opportunities for observations and measurements using conventional monitoring networks, turning the focus to event-based, post-disaster studies. Post-flood surveys exploit field evidence to make indirect discharge estimations, aiming to improve our understanding of hydrological response dynamics under extreme meteorological forcing. However, discharge estimations are associated with demanding fieldwork aiming to record in small timeframes delicate data and data prone-to-be-lost and achieve the desired accuracy in measurements to minimize various uncertainties of the process. In this work, we explore the potential of unmanned aerial systems (UAS) technology, in combination with the Structure for Motion (SfM) and optical granulometry techniques in peak discharge estimations. We compare the results of the UAS-aided discharge estimations to estimates derived from differential Global Navigation Satellite System (d-GNSS) surveys and hydrologic modelling. The application in the catchment of the Soures torrent in Greece, after a catastrophic flood, shows that the UAS-aided method determined peak discharge with accuracy, providing very similar values compared to the ones estimated by the established traditional approach. The technique proved to be particularly effective, providing flexibility in terms of resources and timing, although there are certain limitations to its applicability, related mostly to the optical granulometry as well as the condition of the channel. The application highlighted important advantages and certain weaknesses of these emerging tools in indirect discharge estimations, which we discuss in detail.


2006 ◽  
Vol 10 (2) ◽  
pp. 233-243 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This result is partial so far: the impact of the rainfall spatial heterogeneity has not been studied for instance. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


2021 ◽  
Vol 331 ◽  
pp. 08006
Author(s):  
Arniza Fitri ◽  
Muhammad Shubhi Nurul Hadie ◽  
Adelia Agustina ◽  
Dian Pratiwi ◽  
Susarman ◽  
...  

Cimadur river basin is one of the most important catchment areas in Lebak District, Banten Province. For the past few years, the catchment has experienced floods during the rainy season. The big issue of flooding has been recorded recently in December 2019 which has caused damage and negative impacts to the local people and surrounding community. This study aims to analyze the possibility of flood peak discharges in the catchment area of the Cimadur river. The flood discharges are calculated for 2, 5, 10, 25, 50, and 100 years return period based on the daily rainfall data from the year 2011 to 2020. The rainfall and land use data are obtained from PT Saeba Consultant. In this study, the hydrological analyses are including 1) analyses of average annual rainfall using the Thiessen method; 2) analyses of rainfall distribution and estimation of design rainfall by considering three methods involving: Log-Normal, Log Pearson Type III, and Gumbel Type 1; and 3) analyses of flood discharges by adopting Nakayasu Synthetic Hydrograph Unit (SHU). The rainfall distribution analyses show that the Log Pearson Type III provided the best fit. Based on the flood peak discharges analyses, the results show that the flood discharges for the 5, 10, 25, and 50 years return period in the Cimadur river basin are 470.71 m3/s, 560.16 m3/s, 698 m3/s, and 820.4 m3/s, respectively.


2000 ◽  
Vol 31 (4-5) ◽  
pp. 357-372 ◽  
Author(s):  
Jonas Elíasson

The M5 method, originally proposed by the Natural Resource Council in UK, is used for estimating precipitation in Iceland. In this method the M5 (24-hour precipitation with 5-year return period) is used as an index variable. Instead of the usual approach in estimating regional values of the coefficient of variation another coefficient, Ci is used. The M5 and the Ci define together a generalised distribution that can be utilised to estimate the statistical distribution of precipitation anywhere in the country. M5 maps have been prepared for this purpose by the Engineering Research Institute of the University of Iceland. Methods have been devised to derive PMP values from the M5 values. This paper describes the method and gives examples of calculation. It is also shown that the same CDF applies for the observations of shorter duration precipitation available in Iceland. By applying the principle of identical statistical distribution for standardised annual maxima of any duration, IDF (Intensity – Duration – Frequency) curves have been derived. This allows the IDF – values to be calculated on basis of M5 and Ci, which are the two-parameters that define the generalised precipitation distribution.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 634 ◽  
Author(s):  
Do Nam ◽  
Tran Hoa ◽  
Phan Duong ◽  
Duong Thuan ◽  
Dang Mai

Exploring potential floods is both essential and critical to making informed decisions for adaptation options at a river basin scale. The present study investigates changes in flood extremes in the future using downscaled CMIP5 (Coupled Model Intercomparison Project—Phase 5) high-resolution ensemble projections of near-term climate for the Upper Thu Bon catchment in Vietnam. Model bias correction techniques are utilized to improve the daily rainfall simulated by the multi-model climate experiments. The corrected rainfall is then used to drive a calibrated supper-tank model for runoff simulations. The flood extremes are analyzed based on the Gumbel extreme value distribution and simulation of design hydrograph methods. Results show that the former method indicates almost no changes in the flood extremes in the future compared to the baseline climate. However, the later method explores increases (approximately 20%) in the peaks of very extreme events in the future climate, especially, the flood peak of a 50-year return period tends to exceed the flood peak of a 100-year return period of the baseline climate. Meanwhile, the peaks of shorter return period floods (e.g., 10-year) are projected with a very slight change. Model physical parameterization schemes and spatial resolution seem to cause larger uncertainties; while different model runs show less sensitivity to the future projections.


2015 ◽  
Vol 19 (10) ◽  
pp. 4307-4315 ◽  
Author(s):  
L. Elleder

Abstract. This study presents a flood frequency analysis for the Vltava River catchment using a major profile in Prague. The estimates of peak discharges for the pre-instrumental period of 1118–1824 based on documentary sources were carried out using different approaches. 187 flood peak discharges derived for the pre-instrumental period augmented 150 records for the instrumental period of 1825–2013. Flood selection was based on Q10 criteria. Six flood-rich periods in total were identified for 1118–2013. Results of this study correspond with similar studies published earlier for some central European catchments, except for the period around 1750. Presented results indicate that the territory of the present Czech Republic might have experienced extreme floods in the past, comparable – with regard to peak discharge (higher than or equal to Q10) and frequency – to the flood events recorded recently.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 29-37 ◽  
Author(s):  
S.W. Chung ◽  
J.K. Oh

The impact of inflow mixing on reservoir stratification is significant for reservoirs situated in a monsoon climate area. It cause difficulty in the calibration of a two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 that was recently adopted for a real-time turbidity monitoring and modelling system (RTMMS) for a reservoir in Korea. This paper presents a systematic calibration and verification processe of the model for the reservoir. A sensitivity analysis showed that wind sheltering, Chezy, and sediment heat exchange coefficients are most sensitive to stratification structure. Inflow temperature was very sensitive during a year of normal precipitation, but it is not significant during a year of drought. Residual analysis revealed that the model has shortcomings in the simulation of water temperature near the metalimnetic zone without calibration. After calibration, however, the absolute mean errors between observed and simulated values were placed within 0.116–1.190 °C. Its performance was maintained under heavy flood events during the verification stage, which implies that the model is ready to use for the simulation of turbidity plume in the RTMMS under various hydrologic conditions. The suggested model calibration strategy and relevant results may be adopted for other reservoirs located in a monsoon climate area.


2016 ◽  
Vol 75 (s2) ◽  
Author(s):  
Helmi Saidi ◽  
Claudia Dresti ◽  
Marzia Ciampittiello

While the effects of past industrial pollution on the chemistry and biology of Lake Orta have been well documented, annual and seasonal fluctuations of lake levels have not yet been studied. Considering their potential impacts on both the ecosystem and on human safety, fluctuations in lake levels are an important aspect of limnological research. In the enormous catchment of Lake Maggiore, there are many rivers and lakes, and the amount of annual precipitation is both high and concentrated in spring and autumn. This has produced major flood events, most recently in November 2014. Flood events are also frequent on Lake Orta, occurring roughly triennially since 1917. The 1926, 1951, 1976 and 2014 floods were severe, with lake levels raised from 2.30 m to 3.46 m above the hydrometric zero. The most important event occurred in 1976, with a maximum level equal to 292.31 m asl and a return period of 147 years. In 2014 the lake level reached 291.89 m asl and its return period was 54 years. In this study, we defined trends and temporal fluctuations in Lake Orta water levels from 1917 to 2014, focusing on extremes. We report both annual maximum and seasonal variations of the lake water levels over this period. Both Mann-Kendall trend tests and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes, and logistic regression was used to detect trends in the number of flood events. Lake level decreased during winter and summer seasons, and a small but statistically non-significant positive trend was found in the number of flood events over the period. We provide estimations of return period for lake levels, a metric which could be used in planning lake flood protection measures.


Sign in / Sign up

Export Citation Format

Share Document