Removal of nickel(II) from aqueous solution by Vigna unguiculata (cowpea) pods biomass

2016 ◽  
Vol 73 (10) ◽  
pp. 2301-2310 ◽  
Author(s):  
Upenyu Guyo ◽  
Kudakwashe Sibanda ◽  
Edith Sebata ◽  
Fidelis Chigondo ◽  
Mambo Moyo

The potential to remove nickel(II) ions from aqueous solution using a biosorbent prepared from Vigna unguiculata pods (VUPs) was investigated in batch experiments. The batch mode experiments were conducted utilising the independent variables of pH (2 to 8), contact time (5 to 120 min), dosage concentration (0.2 to 1.6 g), nickel(II) concentrations (10 to 80 mg L−1) and temperature (20 to 50°C). The biosorption data fitted best to the Freundlich biosorption model with a correlation coefficient (R2) of 0.993 and lowest chi-squared value of 31.89. The maximum sorption capacity of the VUP for nickel(II) was 27.70 mg g−1. Kinetics studies revealed that the biosorption process followed the pseudo-second-order model as it had the lowest sum of square error value (0.808) and correlation coefficient close to unity (R2 = 0.998). The calculated thermodynamic parameters showed that the biosorption process was feasible, spontaneous and endothermic. Consequently, the study demonstrated that VUP biomass could be used as a biosorbent for the removal of nickel(II) from aqueous solution.

2013 ◽  
Vol 68 (10) ◽  
pp. 2208-2213 ◽  
Author(s):  
Artis Robalds ◽  
Maris Klavins ◽  
Liga Dreijalte

The increasing industrial use of thallium has raised the need for removal of this highly toxic element from wastewater. Thallium is more toxic than cadmium, copper, zinc, lead and mercury and as it is easily accumulated in humans, animals and plants, it poses a threat to both the environment and human health. Peat has been used as an effective, relatively cheap and easily available sorbent to treat waters containing heavy metals. In this study, peat was characterized and used as sorbent for the removal of Tl(I) ions from aqueous solution. The effect of initial Tl(I) concentration, pH, contact time, temperature and ionic strength was studied in batch mode. The maximum sorption capacity of peat reached 24.14 mg/g at 20 °C and initial Tl(I) concentration of 500 mg/L. Sorption capacity was found to be pH dependent and maximum uptake occurred at pH 10. Kinetic data revealed that sorption was relatively rapid – 82.8% of Tl(I) ions were sorbed in the first 10 min. The kinetics of sorption was analyzed using pseudo-first order and pseudo-second order models. Results show that peat can be used as an effective sorbent to remove Tl(I) ions from aqueous solutions.


Author(s):  
Sukru ASLAN ◽  
Ayben POLAT ◽  
Ugur Savas TOPCU

In this study, Ni2+ sorption onto the waste eggshell was investigated under different operational conditions. Results indicated that the eggshell could be successfully used to remove Ni2+ ions from the water. Quick sorption process reached to equilibrium in about 2 hours with maximum sorption at pH 7.0. Based on the experimental data, Langmuir isotherm model with the qm value of 1.845 mg Ni2+/g eggshell was observed. The pseudo-second-order model provided the best correlation coefficient in comparison with other models. The calculated qe values derived from the pseudo-second-order for sorption of Ni2+ ions were very close to the experimental (qexp) values. Such thermodynamic parameters as ΔG°, ΔH°, and ΔS° were determined in order to predict the nature of adsorption. Results indicated that the adsorption of Ni2+ onto the eggshell was endothermically supported by the increasing adsorption of Ni2+ ions with temperature.


2013 ◽  
Vol 664 ◽  
pp. 326-330 ◽  
Author(s):  
Xian Hui Ma ◽  
Liu Ming Wu ◽  
Xiao Yao Guo ◽  
Mei Hua Zhang ◽  
An Liang Ma

Synthetic nano-carbon-hydroxylapatite was used to remove methylene blue (MB) from aqueous solution. The influence of various parameters such as reaction time, initial dye concentration and pH on the adsorption was investigated in batch mode and the adsorption mechanism was briefly discussed. The experimental results show that the uptake of MB was rapid and equilibrium could be reached in 30 minutes, and the uptake of MB increased with increasing initial dye concentration and pH. The pseudo-second-order model fits well to the kinetics and Henry adsorption isotherm can be used to describe the experimental data. The adsorption mechanism can be explained mainly by electrostatic attraction.


2011 ◽  
Vol 356-360 ◽  
pp. 537-546
Author(s):  
Yow Loo Au Yoong ◽  
Pei Lay Yap ◽  
Muralithran G. Kutty ◽  
Olaf Timpe ◽  
Malte Behrens ◽  
...  

The use of surface oxidized covellite (CuS), namely mixed phase copper sulphide (CuS and CuSO4) was studied for the removal of mercury from aqueous solution under the effect of various reaction parameters (pH, time, Hg(II) concentration). From batch sorption studies, the equilibrium data revealed that the sorption behaviour of Hg(II) onto mixed phase copper sulphide follows well with Langmuir isotherm and the maximum sorption capacity (Qmax) determined ≈ 400mg Hg(II) /g of sorbent. Meanwhile, all the unreacted and reacted mixed phase copper sulphides were also characterized by Powder XRD, SEM and XPS techniques. The results indicated that the sorption of Hg(II) onto mixed phase copper sulphide occurs initially through the dissolution of surface oxidized CuSO4layer. After that, the surface complexation product formed and sorbed onto the surface of CuS. These outcomes suggest the potential ability of CuS in removing Hg(II) even if the CuS layer is being surrounded by oxidized layer of CuSO4.


2016 ◽  
Vol 18 (3) ◽  
pp. 81-87 ◽  
Author(s):  
Józef Nastaj ◽  
Agata Przewłocka ◽  
Monika Rajkowska-Myśliwiec

Abstract The biosorption process of three divalent metal ions – nickel, lead and zinc- from on calcium alginate from aqueous solution was studied, in single component systems. The biosorbent were investigated by Fourier Transform Infrared Spectroscopy. The batch mode experiments of the adsorption process were carried out as a function of pH, initial metal ions concentration, sorbent dosage and contact time. The adsorption influencing parameters for the maximum removal of metal ions were optimized. The experimental data were analyzed using the Langmuir, Freundlich, Langmuir-Freundlich, Koble-Corrigan and Redlich-Peterson models. The kinetic data of biosorption process were evaluated using pseudo-first and pseudo-second order equations. The Weber and Morris model was employed to interpret the metal ions diffusion in biosorption process.


RSC Advances ◽  
2014 ◽  
Vol 4 (76) ◽  
pp. 40580-40587 ◽  
Author(s):  
Prasanta Kumar Raul ◽  
Samarpita Senapati ◽  
Ashish K. Sahoo ◽  
Iohborlang M. Umlong ◽  
Rashmi R. Devi ◽  
...  

CuO nanorods can remove Pb(ii) from aqueous solution with a maximum sorption capacity of 3.31 mg g−1at 298 K.


2015 ◽  
Vol 16 (1) ◽  
pp. 115-127 ◽  
Author(s):  
P. Dhanasekaran ◽  
P. M. Satya Sai ◽  
C. Anand Babu ◽  
R. Krishna Prabhu ◽  
K. K. Rajan

Arsenic is a toxic element found naturally in groundwater. Due to its carcinogenicity, risk for heart diseases and diabetes, arsenic needs to be removed from groundwater for potable application. ‘Anjili’ tree sawdust was chemically modified with ferric hydroxide and activated alumina (SFAA) and used as an adsorbent for the removal of arsenic from groundwater. The adsorbent was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) to study the pore structure and surface functional groups. Effect of contact time, initial concentration, pH, particle size and temperature was studied. Arsenic adsorbed by SFAA followed Freundlich adsorption isotherm. Maximum sorption of arsenic by SFAA adsorbent occurred at pH 6.5. Arsenic sorption kinetics followed a pseudo-second-order model. The maximum sorption capacity at 303 K was found to be 54.32 mg/g for As(III) and 77.60 mg/g for As(V). Interference of other ions on the adsorption was in the order of PO43− > SO42− > HCO3− > NO3−.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2019 ◽  
Vol 80 (5) ◽  
pp. 884-891
Author(s):  
Daying Chen ◽  
Nasi Tu ◽  
Changkun Si ◽  
Meilin Yin ◽  
Xiaohui Wang

Abstract Mesoporous TiO2 has been prepared by a brief and simple sol–gel processing and applied for the removal of Cu(II) from aqueous solution. The adsorption behavior of mesoporous TiO2 for Cu(II) was investigated using batch experiments. Results showed that the pseudo-second-order model and Langmuir isotherm were more accurate to describe the kinetics process and adsorption isotherm. Mesoporous TiO2 adsorbent displayed excellent Cu(II) adsorption efficiency (195.52mg g−1). The thermodynamic parameters showed that the adsorption was spontaneous and endothermic. It was also found that mesoporous TiO2 could be used at least seven times without obvious loss of its original adsorption efficiency. Therefore, the obtained mesoporous TiO2 could be employed as an effective and low-cost adsorbent for removal of Cu(II) from contaminated effluents.


Sign in / Sign up

Export Citation Format

Share Document