scholarly journals The use of constructed wetlands for the treatment and reuse of urban wastewater for the irrigation of two warm-season turfgrass species under Mediterranean climatic conditions

2017 ◽  
Vol 76 (2) ◽  
pp. 459-470 ◽  
Author(s):  
Mario Licata ◽  
Teresa Tuttolomondo ◽  
Claudio Leto ◽  
Salvatore La Bella ◽  
Giuseppe Virga

Constructed wetlands (CWs) represent low-cost technology for the treatment and reuse of wastewater in urban areas. This study aimed to evaluate the pollutant removal efficiency of a CW system and to assess the effects of irrigation using treated urban wastewater on soil and on two warm-season turf species. The research was carried out in Sicily (Italy) on a pilot-scale horizontal subsurface flow system which was fed with treated urban wastewater following secondary treatment from an activated-sludge wastewater treatment plant. The pilot system was located in an open urban park and comprised two separate parallel planted units. Experimental fields of Cynodon dactylon (L.) Pers. and Paspalum vaginatum Sw. were set up close to the system and irrigated with both treated wastewater (TWW) and freshwater (FW). Irrigation with TWW did not result in a significant variation in soil pH and soil salinity in the topsoil. The turf species tolerated high sodium levels in the soil due to TWW irrigation. Savings in FW and mineral fertilizers were deemed significant. The results highlight the fact that use of CW systems for the treatment and reuse of wastewater can represent a sustainable way to obtain alternative water resources for turfgrass irrigation in urban areas.

2009 ◽  
Vol 12 (2) ◽  
pp. 140-149 ◽  
Author(s):  
Guangtao Fu ◽  
Christos Makropoulos ◽  
David Butler

The urban wastewater system is an important part of integrated water management at the catchment level, yet, more often than not, inclusion of the system and its interaction with the surrounding catchment is either oversimplified or totally ignored in catchment modelling. Reasons of complexity and computational burden are mostly at the heart of this modelling gap. This paper proposes to use artificial neural networks (ANN) as a surrogate for the simulation of the urban wastewater system, allowing for a more realistic representation of the urban component to be incorporated into catchment models within a broad scale modelling framework. As a proof of concept, an integrated urban wastewater model is developed and its response in terms of both quantity and quality in combined sewer overflow (CSO) discharges and treatment plant effluent are captured and used to train a feedforward back-propagation ANN. The comparative results of the integrated urban water model and the ANN show good agreement for both water quantity and quality parameters. The resulting trained network is then embedded into a MIKE BASIN catchment model. It is suggested that ANN models greatly improve the level at which broad scale catchment models can accurately take into account urban–rural interactions.


2020 ◽  
Vol 1 (4) ◽  
pp. 9-15
Author(s):  
Rafael Marín Galvín

Bio-solids are the final fate of pollution present in urban wastewater, reaching the production of these ones in Spanish WWTPs 701,751 T/year (dates of 2018). Considering that 85% of Spanish bio-solids are used in agronomy, it is important to know characteristics of biosolids there produced, and in this way, we have investigated bio-solids generated in La Golondrina´s WWTP (Córdoba, Spain) along 2000-2019. This WWTP is a conventional facility operated by activated sludges (26.55x106 m3/year treated) which has produced 1.43 kg of bio-solids per m3 of treated wastewater (38.000 T/year). Our results indicated that bio-solids had a dryness over initial mass of 22.3%, and 74.9% of organic matter over dried matter (o.d.m.). At the same time, major components detected in bio-solids were N, P and Ca which levels were 5.0%, 3.5% and 3.7%, respectively. On the other hand, concentration of total metals in bio-solids ranged 13,024 mg/kg o.d.m., being the main metal Fe (11.749 mg/kg o.d.m.) followed by Zn, Cu and Mn, with levels as mg/kg o.d.m. of 463.1, 392.8 and 265.7, respectively. Evolution per year of all the investigated parameters are shown in the paper. Taking into account the use of bio-solids in agronomy, we have evaluated levels of metals limited by the Spanish normative to this respect: thus, the seven metals restricted (Cd, Cu, Ni, Pb, Zn, Hg and Cr) exhibited concentration in bio-solids very lower than parametric values established. Moreover, we have estimated the ratios of accumulation of organics and metals from wastewater to bio-solids: thus, organic matter, N and P, were accumulated in bio-solids respectively, 342, 356 and 643 times, and total metals, 2,632 times. Finally, levels of Escherichia coli slightly varied from wastewater to bio-solids: 1.5x108 colony-forming units/L in the first one, and 0.9x108/g (o.d.m.) in the second ones.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2431
Author(s):  
Sandra Ricart ◽  
Antonio M. Rico-Amorós

Treated wastewater is constantly produced and relatively unaffected by climatic conditions, while Constructed Wetlands (CWs) are recognized as green technology and a cost-effective alternative to improve treated wastewater quality standards. This paper analyses how farmers consider (1) treated wastewater to face water scarcity risk and (2) CW as mechanisms to face agricultural water pollution in a climate change adaptation context. A survey about climate change perception and adaptation measures was answered by 177 farmers from two irrigation communities near El Hondo coastal wetland and the Santa Pola saltmarshes, both perceived as natural-constructed systems in Alicante, southern Spain. Results highlighted how, even with poor-quality standards, treated wastewater is considered a non-riskier measure and more reliable option when addressing climate change impacts. Overall, physical water harvesting (such as CWs) is the favorite choice when investing in water technologies, being perceived as the best option for users of treated wastewater and those concerned about water quality standards. Consequently, CWs were recognized as mechanisms to increase water supply and reduce water pollution. Policy-makers and water managers can use these learnings from farmers’ experience to identify the main barriers and benefits of using treated wastewater and CWs to address water scarcity and water pollution risks.


2008 ◽  
Vol 57 (12) ◽  
pp. 1983-1989 ◽  
Author(s):  
Gaëlle Semard ◽  
Auguste Bruchet ◽  
Pascal Cardinaël ◽  
Jean-Philippe Bouillon

The list of priority chemicals included in various regulations such as the European Water Framework Directive, as well as the list of hazardous contaminants identified in the aquatic environment, are increasing at an accelerated pace. Therefore, there is a need for broad spectrum methods capable of simultaneously determining hundreds, if not thousands, of contaminants. For the analysis of non-polar or semi-polar contaminants, comprehensive two-dimensional gas chromatography (GC × GC) is more powerful than conventional gas chromatography thanks to a separation on two different stationary phases. This paper reports the use of GC × GC for a broad screening of hazardous contaminants in an urban wastewater plant. Comparison between the raw and treated wastewater has been carried out using a semi-quantitative approach. A variety of drugs, personal care products, pesticides, carcinogens and compounds toxic for reproduction, were identified. Most of these compounds were removed or decreased by this wastewater treatment plant. Preliminary results from this single plant will need to be confirmed by a more extensive study before drawing conclusions on the removal efficiency of 2D-GC amenable compounds.


Intervirology ◽  
2021 ◽  
pp. 1-6
Author(s):  
Ousmane Kebe ◽  
Maria-Dolores Fernandez-Garcia ◽  
Amary Fall ◽  
Hamet Dia ◽  
Maxime Bidalot ◽  
...  

<i>Aichi virus 1</i> (AiV-1) has been proposed as a causative agent of human gastroenteritis. In this study, raw, decanted, and treated wastewater samples from a wastewater treatment plant in an urban area of Dakar, Senegal, were collected. AiV-1 was detected in raw (70%, 14/20), decanted (68.4%, 13/19), and treated (59.3%, 16/27) samples, revealing a noticeable resistance of AiV-1 to chlorine-based treatment. Phylogenetic analysis revealed that all sequences clustered within genotype B. Our study presents the first report on the detection of AiV-1 in the environment of Dakar and constitutes indirect evidence of virus circulation in the population.


2019 ◽  
Vol 9 (4) ◽  
pp. 685 ◽  
Author(s):  
Luis Sandoval ◽  
Sergio Zamora-Castro ◽  
Monserrat Vidal-Álvarez ◽  
José Marín-Muñiz

The vegetation in constructed wetlands (CWs) plays an important role in wastewater treatment. Popularly, the common emergent plants in CWs have been vegetation of natural wetlands. However, there are ornamental flowering plants that have some physiological characteristics similar to the plants of natural wetlands that can stimulate the removal of pollutants in wastewater treatments; such importance in CWs is described here. A literature survey of 87 CWs from 21 countries showed that the four most commonly used flowering ornamental vegetation genera were Canna, Iris, Heliconia and Zantedeschia. In terms of geographical location, Canna spp. is commonly found in Asia, Zantedeschia spp. is frequent in Mexico (a country in North America), Iris is most commonly used in Asia, Europe and North America, and species of the Heliconia genus are commonly used in Asia and parts of the Americas (Mexico, Central and South America). This review also compares the use of ornamental plants versus natural wetland plants and systems without plants for removing pollutants (organic matter, nitrogen, nitrogen and phosphorous compounds). The removal efficiency was similar between flowering ornamental and natural wetland plants. However, pollutant removal was better when using ornamental plants than in unplanted CWs. The use of ornamental flowering plants in CWs is an excellent option, and efforts should be made to increase the adoption of these system types and use them in domiciliary, rural and urban areas.


2003 ◽  
Vol 3 (4) ◽  
pp. 223-229 ◽  
Author(s):  
C.D. Tsadilas ◽  
P.S. Vakalis

The effect of irrigation with treated municipal wastewater on the agricultural income from cotton and corn crops was studied by a three-year field experiment (1995-1997), carried out within the wastewater treatment plant (WWTP) of the city of Larissa, central Greece. The experimental design for both crops was randomised complete blocks with five treatments (M- control-irrigation with fresh water, W-irrigation with wastewater and no mineral fertilization, MF- irrigation with fresh water and complete mineral fertilization, WSF- irrigation with wastewater and reduced mineral fertilization, WTF- irrigation with wastewater and complete mineral fertilization). Each treatment was replicated four times. The agricultural income was assessed using the yield of the crops and the economic data of the area. The results showed that in the case of corn, the treatment WTF gave the highest agricultural income. The treatments W and WSF gave higher agricultural income compared to the control but was not significantly different compared to the treatment MF. In the case of cotton, all the treatments included wastewater use, increased significantly the agricultural income in comparison to the control, but at similar level as the treatment MF did. From the data of this study, it is concluded that treated wastewater can be used for irrigation of corn and cotton, saving fresh water and mineral fertilizers and obtaining the same or better economic results.


2020 ◽  
Vol 12 (12) ◽  
pp. 5102
Author(s):  
José Alberto Herrera-Melián ◽  
Mónica Mendoza-Aguiar ◽  
Rayco Guedes-Alonso ◽  
Pilar García-Jiménez ◽  
Marina Carrasco-Acosta ◽  
...  

In this study, pilot-scale hybrid constructed wetlands (CWs) and multistage horizontal subsurface flow CWs (HF CWs) have been studied and compared for the treatment of raw urban wastewater. In the hybrid CWs, the first stage was a mulch-based horizontal subsurface flow CW and the second stage was a vertical subsurface flow CW (VF CW). The VF CWs were used to determine if sand could improve the performance of the hybrid CW with respect to the mulch. In the multistage HFs, mulch, gravel and sand were used as substrates. The effect of water height (HF10: 10 cm vs. HF40: 40 cm) and surface loading rate (SLR: 12 vs. 24 g Chemical Oxygen Demand (COD)/m2d) has been studied. The results show that the use of sand in the vertical flow stage of the hybrid CW did not improve the average performance. Additionally, the sand became clogged, while the mulch did not. The effect of water height on average pollutant removal was not determined but HF10 performed better regarding compliance with legal regulations. With a SLR of 12 g COD/m2d, removals of HF10 were: 79% for COD, 75% for NH4+-N, 53% for dissolved molybdate-reactive phosphate-P (DRP), 99% for turbidity and 99.998% for E. coli and total coliforms. When SLR was doubled, removals decreased for NH4+-N: 49%, DRP: −20%, E coli and total coliforms: 99.5–99.9%, but not for COD (85%) and turbidity (99%). Considering the obtained results and the simplicity of the construction and operation of HFs, HF10 would be the most suitable choice for the treatment of raw urban wastewater without clogging problems.


2020 ◽  
Vol 2 (1) ◽  
pp. 30-37
Author(s):  
Mohammad Mahdi Kohansal ◽  
Sara Saadati ◽  
Saeid Eslamian

The rapid increase of human population accompanied by industrial growth and rising standards of living has resulted in heavy demand for water across all sectors. So, treated wastewater could be an unlimited and stable alternative for water supply to use in irrigation and industry and plays an important role to achieve sustainable urban development. Nowadays, finding an appropriate wastewater treatment & reuse method is one of the important issues which many research has been conducted in this field. The aim of this study was to compare the treated wastewater (industrial) by biological method compared to the nanofiltration method and determine more suitable method for industrial wastewater treatment. Thus, BOD5 of industrial wastewater was used for this purpose and the appropriate method was chosen by calculating the percentage and percentage of this parameter as well as analyzing the significance of the difference between the results of the two methods used by SPSS software. The nanofilter used in the study was made from carbon-neon and the pressure of its desired performance has been 10 times and the diameter of the stomata is 50-80 nm. Also, all experiments were performed weekly for a period of 11 weeks in Najaf Abad wastewater treatment plant. The results showed that the mean BOD5 = 6.87 mg / L measured by nanofiltration method while the mean BOD5 is 9.91 mg / L by biological method. According to the results, the nanofiltration method is more effective than the biological method. Nanofiltration method is suggested to prove the superiority and other water quality parameters are also tested.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 180 ◽  
Author(s):  
Wojciech Dąbrowski ◽  
Beata Karolinczak ◽  
Paweł Malinowski ◽  
Dariusz Boruszko

Reject water is a by-product of every municipal and agro-industrial wastewater treatment plant (WWTP) applying sewage sludge stabilization. It is usually returned without pre-treatment to the biological part of WWTP, having a negative impact on the nitrogen removal process. The current models of pollutants removal in constructed wetlands concern municipal and industrial wastewater, whereas there is no such model for reject water. In the presented study, the results of treatment of reject water from dairy WWTP in subsurface vertical flow (SS VF) and subsurface horizontal flow (SS HF) beds were presented. During a one-year research period, SS VF bed reached 50.7% efficiency of TN removal and 73.8% of NH4+-N, while SS HF bed effectiveness was at 41.4% and 62.0%, respectively. In the case of BOD5 (biochemical oxygen demand), COD (chemical oxygen demand), NH4+-N, and TN (total nitrogen), the P-k-C* model was applied. Multi-model nonlinear segmented regression analysis was performed. Final mathematical models with estimates of parameters determining the treatment effectiveness were obtained. Treatment efficiency increased up to the specific temperature, then it was constant. The results obtained in this work suggest that it may be possible to describe pollutant removal behavior using simplified models. In the case of TP (total phosphorus) removal, distribution tests along with a t-test were performed. All models predict better treatment efficiency in SS VF bed, except for TP.


Sign in / Sign up

Export Citation Format

Share Document