scholarly journals Preparation of hydroxyapatite-based porous materials for absorption of lead ions

2019 ◽  
Vol 80 (7) ◽  
pp. 1266-1275
Author(s):  
Zejun Wang ◽  
Kangqi Sun ◽  
Yufeng He ◽  
Pengfei Song ◽  
Dawei Zhang ◽  
...  

Abstract In this paper, soybean protein isolate (SPI) was used as template, hydroxyapatite was crystallized on protein chains of SPI by in-situ synthesis, then the obtained inorganic HA/biopolymer SPI composite (HA@SPI) was calcined at suitable temperature, which afforded a novel hydroxyapatite-based porous materials (HApM). The results indicated that the product showed a porous morphology structure and excellent absorption performance for Pb2+. HApM maximum removal of lead was attained (96.25%) at an initial pH value of 7.4, temperature of 25 °C and contact time of 30 min with an initial metal concentration of 60 mg/L. In order to identify composition, structure and functional groups involved in the uptake of Pb2+, Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), X-ray diffraction (XRD) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Brunauer–Emmett–Teller (BET) analysis were carried out. Therefore, the hydroxyapatite-based porous materials (HApM) is a promising candidate for the treatment of liquid wastes containing toxic Pb2+ metal ion, heavy metal ion antidotes and other related fields.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259809
Author(s):  
Peng Song ◽  
Wei Xu ◽  
Kuiming Wang ◽  
Yang Zhang ◽  
Fei Wang ◽  
...  

A predicted metalloproteinase gene, HypZn, was cloned from Aspergillus niger CGMCC 3.7193 and expressed in Pichia pastoris GS115, and the physicochemical characteristics of recombinant HypZn were investigated after separation and purification. The results showed that the specific activity of the purified HypZn reached 1859.2 U/mg, and the optimum temperature and pH value of HypZn were 35°C and 7.0, respectively. HypZn remained stable both at 40°C and at pH values between 5.0 and 8.0. The preferred substrate of HypZn was soybean protein isolates, and the Km and Vmax values were 21.5 μmol/mL and 4926.6 μmol/(mL∙min), respectively. HypZn was activated by Co2+ and Zn2+ and inhibited by Cu2+ and Fe2+. The degree of soybean protein isolate hydrolysis reached 14.7%, and the hydrolysates were of uniform molecular weight. HypZn could tolerate 5000 mM NaCl and completely lost its activity after 30 min at 50°C. The enzymological characterizations indicated that HypZn has great application potential in the food industry, especially in fermented food processing.


2002 ◽  
Vol 20 (4) ◽  
pp. 393-416 ◽  
Author(s):  
Fawzi Banat ◽  
Sameer Al-Asheh ◽  
Dheaya‘ Al-Rousan

This study examined and compared the ability of chicken feathers, human hair and animal horns, as keratin-composed biosorbents, for the removal of Zn2+ and Cu2+ ions from single metal ion aqueous solutions under different operating conditions. The three biosorbents investigated in this study were all capable of adsorbing Zn2+ and Cu2+ ions from aqueous solutions. The biosorbent showing the highest uptake of Zn2+ and Cu2+ ions was animal horns. Chicken feathers showed a higher Cu2+ ion uptake and a lower Zn2+ ion compared to human hair. Increasing the initial concentration of Zn2+ or Cu2+ ions, or increasing the initial pH value, increased the metal ion uptake. Such uptake decreased when the temperature was raised from 25°C to 50°C for all adsorbent/metal ion combinations except for Zn2+ ion/human hair where the uptake increased with temperature. It was demonstrated that the addition of NaCl salt to the metal ion solution depressed the metal ion uptake. The Freundlich isotherm model was found to be applicable to the adsorption data for Cu2+ and Zn2+ ions.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 667
Author(s):  
Chenxiao Wang ◽  
Hao Yin ◽  
Yanyun Zhao ◽  
Yan Zheng ◽  
Xuebing Xu ◽  
...  

This work aimed to improve the functional properties of soybean protein isolate (SPI) by high hydrostatic pressure (HHP) and develop SPI incorporated yogurt. Response surface methodology (RSM) was used to optimize the HHP treatment parameters, including pressure, holding time, and the ratio of SPI/water. Water holding capacity, emulsifying activity index, solubility, and hardness of SPI gels were evaluated as response variables. The optimized HPP treatment conditions were 281 MPa of pressure, 18.92 min of holding time, and 1:8.33 of SPI/water ratio. Water and oil holding capacity, emulsifying activity, and stability of SPI at different pH were improved. Additionally, relative lipoxygenase (LOX) activity of HHP treated SPI (HHP-SPI) was decreased 67.55 ± 5.73%, but sulphydryl group content of HHP-SPI was increased 12.77%, respectively. When incorporating 8% of SPI and HHP-SPI into yogurt, the water holding capacity and rheological properties of yogurt were improved in comparison with yogurt made of milk powders. Moreover, HHP-SPI incorporated yogurt appeared better color and flavor.


2013 ◽  
Vol 469 ◽  
pp. 171-174 ◽  
Author(s):  
Ning Zhang ◽  
Si Yao Sui ◽  
Zhe Wang ◽  
Zhong Su Ma

Edible films were prepared using soy protein isolate (4g/100g), oleic acid (0-2g/100g) and stearic acid (0-2g/100g). Effects of the type and ratio of fatty acids (oleic acid and stearic acid) on the thermal properties of soybean protein isolate-based films were investigated. The results indicated that the addition of oleic acid and stearic acid take a significant effect on the thermal stability of soybean protein isolate-based films, as may attribute to that oleic acid is an amphiphilic substance that interacts with both polar and hydrophobic sites on proteins, thus it could improve the functional properties of the films. Besides, the solid state and hydrophobic nature of stearic acid could help limit water diffusion in the matrix more efficiently when it is well-integrated in the matrix through the surfactant action of oleic acid.


Sign in / Sign up

Export Citation Format

Share Document