scholarly journals Simultaneous removal of lead, copper, cadmium, nickel, and cobalt heavy metal ions from the quinary system by Abies bornmulleriana cones

2020 ◽  
Vol 82 (12) ◽  
pp. 3032-3046
Author(s):  
Ensar Oguz

Abstract Abies bornmulleriana cone was used to investigate its biosorption efficiency and capacity of Pb2+, Cu2+, Cd2+, Co2+, and Ni2+ heavy metal ions in a quinary system. The mechanism of multi-metal removal was illustrated in terms of FTIR results. Electrophoretic mobilities of the biosorbents were determined to access the information about the competitive biosorption. BET surface area and pore volume of the biosorbents before and after the biosorption were defined to be (5.05 m2 g−1 and 0.0018 cm3 g−1) and (0.97 m2 g−1 and 0.00032 cm3 g−1), respectively. The average pore width of the biosorbent before and after the biosorption was calculated as 9.34 and 13.04 Å, respectively. The pseudo-first-order model and the pseudo-second-order model were applied to analyze the experimental data. Experimental data have been evaluated according to the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. The maximum biosorption efficiency and capacity for Pb2+, Cu2+, Cd2+, Ni2+, and Co2+ ions were defined as (85.4, 56.4, 35.4, 21.7 and 18.9%) and (8.5, 5.6, 3.5, 2.2 and 1.9 mg g−1), respectively. The selectivity of heavy metal ions resulted in the magnitude order of Pb2+ > Cu2+ > Cd2+ > Ni2+ > Co2+.

2012 ◽  
Vol 518-523 ◽  
pp. 361-368 ◽  
Author(s):  
Rong Bing Fu ◽  
Xin Xing Liu ◽  
Fang Liu ◽  
Jin Ma ◽  
Yu Mei Ma ◽  
...  

A new permeable reactive composite electrode (PRCE) attached with a permeable reactive layer (PRL) of Fe0 and zeolite has been developed for soil pH control and the improved removal efficiency of heavy metal ions (Cd, Ni, Pb, Cu) from soil in electrokinetic remediation process. The effects of different composite electrodes on pH control and heavy metal removal efficiency were studied, and changes in the forms of heavy metals moved onto the electrodes were analyzed. The results showed that with acidic/alkaline zeolite added and renewed in time, the composite electrodes could effectively neutralize and capture H+ and OH- produced from electrolysis of the anolyte and catholyte, avoiding or delaying the formation of acidic/alkaline front in tested soil, preventing premature precipitation of heavy metal ions and over-acidification of soil, and thus significantly improved the heavy metal removal efficiency. Fe0 in composite electrodes could deoxidize and stabilize the heavy metal ions. After that capture and immobilization of the pollutants were achieved. The results also showed that, using "Fe0 + zeolite" PRCE in the cathode with timely renewal, after 15-day remediation with a DC voltage of 1.5 V/cm, the total removal rates of Cd, Pb, Cu and Ni were 49.4%, 47.1%, 36.7% and 39.2%, respectively.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 241 ◽  
Author(s):  
Jian Guo ◽  
Yaqin Song ◽  
Xiaoyang Ji ◽  
Lili Ji ◽  
Lu Cai ◽  
...  

The aim of this study was to optimize the adsorption performance of activated carbon (AC), derived from the shell of Penaeus vannamei prawns, on heavy metal ions. Inexpensive, non-toxic, and renewable prawn shells were subjected to carbonization and, subsequently, KOH-activation to produce nanoporous K-Ac. Carbonized prawn shells (CPS) and nanoporous KOH-activated carbon (K-Ac) from prawn shells were prepared and characterized by FTIR, XRD, BET, SEM, and TEM. The results showed that as-produced K-Ac samples were a porous material with microporous and mesoporous structures and had a high specific surface area of 3160 m2/g, average pore size of about 10 nm, and large pore volume of 2.38 m3/g. Furthermore, batches of K-Ac samples were employed for testing the adsorption behavior of Cd2+ in solution. The effects of pH value, initial concentration, and adsorption time on Cd2+ were systematically investigated. Kinetics and isotherm model analysis of the adsorption of Cd2+ on K-Ac showed that experimental data were not only consistent with the Langmuir adsorption isotherm, but also well-described by the quasi-first-order model. Finally, the adsorption behaviors of as-prepared K-Ac were also tested in a ternary mixture of heavy metal ions Cu2+, Cr6+, and Cd2+, and the total adsorption amount of 560 mg/g was obtained.


1987 ◽  
Vol 7 (2) ◽  
pp. 606-613 ◽  
Author(s):  
M Karin ◽  
A Haslinger ◽  
A Heguy ◽  
T Dietlin ◽  
T Cooke

The human metallothionein IIA (hMT-IIA) gene contains two enhancer elements whose activity is induced by heavy-metal ions such as Cd2+. To determine the nature of the relationship between the metal-responsive elements and the element(s) responsible for the basal activity of the enhancers, the basal-level enhancer element(s), the hMT-IIA enhancers were subjected to mutational analysis. We show that deletion of the metal-responsive elements had no effect on the basal activity of the enhancer but prevented further induction by Cd2+. On the other hand, replacement of the basal-level enhancer element with linker DNA led to inactivation of the enhancer both before and after treatment with Cd2+. Therefore, the metal-responsive elements seems to act as a positive modulator of enhancer function in the presence of heavy-metal ions. In addition to the two enhancers, the hMT-IIA promoter contained one other element, the GC box, required for its basal expression. Unlike deletion of the basal-level enhancer element, replacement of the GC box with linker DNA had no effect on the ability of the promoter to be induced by Cd2+.


2019 ◽  
Vol 124 ◽  
pp. 01051
Author(s):  
Y. Smyatskaya ◽  
A. Toumi ◽  
I. Atamaniuk ◽  
Ia. Vladimirov ◽  
F.K. Donaev ◽  
...  

In this paper, it is proposed to use the biomass of microalgae Chlorella sorokiniana as a biosorbent for wastewater treatment, as well as an oral sorbent. Biosorbents are capable of adsorbing both organic and inorganic compounds, including heavy metals. The sorption capacity depends on the type of aquatic plant and microalgae strain. The use of microalgae and aquatic plants as biosorbents for pollutant treatments is discussed in the introduction part. The biomass of microalgae Chlorella sorokiniana was chosen as the object of this study. The cultivation conditions (temperature, light, pH and aeration) and the optimal biomass harvesting parameters are presented. Dehydration of biomass was carried out in two ways: IR-drying and freeze-drying. The obtained samples were tested for the ability of the biomass to extract heavy metal ions (zinc, cadmium, zinc, copper) from standard solutions. The initial concentration of heavy metal ions in the working solutions was 10 mg/l. Results show that the lyophilized samples demonstrated up to 99.9% of heavy metal removal efficiency. The paper also presents the composition of Chlorella sorokiniana biomass, in which up to 40.97–41.87% are proteins. The analysis of the amino-acid composition showed a ratio of essential to non-essential amino-acids higher than 0.8. All the above results confirm the possibility of using microalgae biomass as an oral sorbent and as an additive in the production of functional foods.


2020 ◽  
Vol 15 ◽  
pp. 155892501989895
Author(s):  
Yaewon Park ◽  
Shuang Liu ◽  
Terrence Gardner ◽  
Drake Johnson ◽  
Aaron Keeler ◽  
...  

Manganese-oxidizing fungi support bioremediation through the conversion of manganese ions into manganese oxide deposits that in turn adsorb manganese and other heavy metal ions from the environment. Manganese-oxidizing fungi were immobilized onto nanofiber surfaces to assist remediation of heavy metal–contaminated water. Two fungal isolates, Coniothyrium sp. and Coprinellus sp., from a Superfund site (Lot 86, Farm Unit #1) water treatment system were incubated in the presence of nanofibers. Fungal hyphae had strong association with nanofiber surfaces. Upon fungal attachment to manganese chloride–seeded nanofibers, Coniothyrium sp. catalyzed the conformal deposition of manganese oxide along hyphae and nanofibers, but Coprinellus sp. catalyzed manganese oxide only along its hyphae. Fungi–nanofiber hybrids removed various heavy metals from the water. Heavy metal ions were adsorbed into manganese oxide crystalline structure, possibly by ion exchange with manganese within the manganese oxide. Hybrid materials of fungal hyphae and manganese oxides confined to nanofiber-adsorbed heavy metal ions from water.


2011 ◽  
Vol 308-310 ◽  
pp. 178-181
Author(s):  
Xin Liang Liu ◽  
Li Jun Wang ◽  
Yong Li Chen ◽  
Nan Chen ◽  
Shuang Fei Wang

The bagasse fibers were activated by alkalize and etherified. 1,2-ethanediamine and carbon disulfide were used to modify the etherify fiber to get the chelate-fiber contained sulfur and nitrogen. The FTIR was used to characterize the xanthated aminating-fiber (XAF). The mechanism of sorption properties for heavy metal ions were studied. As the results shown, the optimal process to prepare the XAF was that the reaction time, concentration of NaOH and dosage of CS2 was 60min, 12% and 2mL, respectively. The chelate-fiber containing sulfur and nitrogen possessed high adsorption capacities for Cu(II) and the mechanism of sorption fitted the pseudo-second-order model well.


2009 ◽  
Vol 02 (01) ◽  
pp. 29-43 ◽  
Author(s):  
SVETLA VASSILEVA ◽  
KOLISHKA TSEKOVA ◽  
DARINKA CHRISTOVA ◽  
DESSISLAVA TODOROVA

In this paper the fuzzy logic method improved by adaptive learning of a fuzzy inference system, based on anfis, was used to demonstrate a software analyzer design for parameters evaluation of ternary heavy metal ions removal. The studied process was conducted to investigate metal binding ability of the novel hybrid hydrogel, obtained by entrapping Penicillium cyclopium biomass into chemically cross-linked poly (vinyl alcohol) (PVA) network toward Cu 2+, Co 2+ and Fe 3+ from ternary aqueous solution. The performance of the biosorbent was evaluated by determining the values of heavy metal uptake and heavy metal removal efficiency in the ternary metal mixture. The innovative immobilization technology developed provides an attractive strategy for the developing high-affinity biosorption system for the treatment of wastewater containing heavy metals in low concentration. The obtained results of both — the studied process and software analyzer design and implementation are illustrated and discussed.


2021 ◽  
Vol 12 (2) ◽  
pp. 1884-1898

Natural water gets contaminated with heavy metal ions because of industrial effluents' discharge into the aquatic environment. As these heavy metal ions cause various health hazards, they should be removed from the aqueous solution. Heavy metal ion concentration in the aqueous solution is very less, so conventional metal removal and recovery processes cannot be applied here. The adsorption method is a great alternative to all these processes as it is a cost-effective and easy method. The use of natural, low-cost materials as adsorbents is eco-friendly also. However, metal uptake capacity of low-cost materials is very less. So, modification is required for low-cost materials to increase their efficiency. In the present review, different modification procedures adopted by different researchers have been discussed. Different low-cost materials used are sawdust, fruit and vegetable wastes, soil, minerals, etc. The modifying agents are heat, acids, bases, and other chemicals. Nevertheless, most of the studies are limited to batch tests only. Future research should be carried out on the extension of batch tests to column study for the large-scale treatment of contaminated water, and the cost of modification procedures and their impact on the environment should also be assessed.


2021 ◽  
pp. 44-56
Author(s):  
Md. Monjurul Islam ◽  
Md. Shafiqul Islam ◽  
Mohd. Maniruzzaman ◽  
Md. Minhaz-Ul Haque ◽  
Anika Amir Mohana

This study demonstrates a successful processing and utilization of banana rachis cellulose nanocrystals (CNCs) dispersed clay composite filter which is capable of adsorbing dye and heavy metal ions namely Pb(II) and Cr(III) from industrial wastewater. The composite of different compositions was prepared by dispersing the cellulose nanocrystals, obtained by acid hydrolysis of banana rachis fibres, within the tri-ethyl amine treated clay. The CNC and treated clay were characterized by Fourier transform infrared (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses. Industrial wastewater containing a basic yellow2 dye and two heavy metal ions, Pb(II) and Cr(III), was passed through the prepared filters set in a column. The dye and metal ions adsorption capability of the filters were analyzed by determining the dye and metal ions concentration into the water before and after passing through the composite filter. The concentration of dye and metal ions in water was determined by a UV-visible spectrophotometer and an atomic absorption spectrophotometer, respectively. It was found that the dye adsorption capacity of the composite filters was about 50 mg per gram of composite as well as Pb(II) and Cr(III) ions adsorption capacities of the composite filters were ˃10.0 mg and ˃12.4 mg respectively per gram of the composite when CNC content in the composite was ˃30 wt.%. It was also found that the metal ions adsorption capability of the composite filter was improved with increasing CNC content in the composites.


2021 ◽  
Vol 61 (4) ◽  
pp. 570-578
Author(s):  
Adeyinka Sikiru Yusuff ◽  
Lekan Taofeek Popoola ◽  
Victor Anochie

In this study, a performance evaluation of an aluminium oxide modified onion skin waste (Al2O3/OSW) for the removal of heavy metal ions (Pb2+ and Cd2+) from aqueous solution was investigated under batch mode adsorption. The surface morphology, elemental composition, functional groups, textural characteristics and surface charge of the as-made Al2O3/OSW adsorbent were examined using SEM, EDX, FTIR, BET surface area and pHpzc techniques, respectively. The effects of initial cations concentration, contact time, adsorbent dosage, and pH on adsorption of Pb2+ and Cd2+ onto Al2O3/OSW were studied. The adsorption data obtained were evaluated by various adsorption isotherm and kinetic models. Results obtained showed that maximum removal percentages of Pb2+ and Cd2+ were 91.23 and 94.10%, respectively, at the optimum Al2O3/OSW dosage of 1.4 g, contact time of 180 min and aqueous solution pH of 6.0. The isotherm and kinetic studies showed a multilayer adsorbate-adsorbent system with the dominance of the chemisorption mechanism. The study concluded that onion skin waste is a viable, cheap and very effective alternative for removing heavy metal ions from water/wastewater.


Sign in / Sign up

Export Citation Format

Share Document