Mass and Width Measurements of $\Sigma_{c}$ Baryons

2000 ◽  
Author(s):  
Eric Wayne Vaandering
Keyword(s):  
Author(s):  
Galen Powers ◽  
Ray Cochran

The capability to obtain symmetrical images at voltages as low as 200 eV and beam currents less than 9 pico amps is believed to be advantageous for metrology and study of dielectric or biological samples. Symmetrical images should allow more precise and accurate line width measurements than currently achievable by traditional secondary electron detectors. The low voltage and current capability should allow imaging of samples which traditionally have been difficult because of charging or electron beam damage.The detector system consists of a lens mounted dual anode MicroChannel Plate (MCP) detector, vacuum interface, power supplies, and signal conditioning to interface directly to the video card of the SEM. The detector has been miniaturized so that it does not interfere with normal operation of the SEM sample handling and alternate detector operation. Biasing of the detector collection face will either add secondaries to the backscatter signal or reject secondaries yielding only a backscatter image. The dual anode design allows A−B signal processing to provide topological information as well as symmetrical A+B images.Photomicrographs will show some of the system capabilities. Resolution will be documented with gold on carbon. Variation of voltage, beam current, and working distance on dielectric samples such as glass and photoresist will demonstrate effects of common parameter changes.


2021 ◽  
Vol 11 (15) ◽  
pp. 6772
Author(s):  
Charlotte Van Steen ◽  
Els Verstrynge

Corrosion of the reinforcement is a major degradation mechanism affecting durability and safety of reinforced concrete (RC) structures. As the corrosion process starts internally, it can take years before visual damage can be noticed on the surface, resulting in an overall degraded condition and leading to large financial costs for maintenance and repair. The acoustic emission (AE) technique enables the continuous monitoring of the progress of internal cracking in a non-invasive way. However, as RC is a heterogeneous material, reliable damage detection and localization remains challenging. This paper presents extensive experimental research aiming at localizing internal damage in RC during the corrosion process. Results of corrosion damage monitoring with AE are presented and validated on three sample scales: small mortar samples (scale 1), RC prisms (scale 2), and RC beams (scale 3). For each scale, the corrosion process was accelerated by imposing a direct current. It is found that the AE technique can detect damage earlier than visual inspection. However, dedicated filtering is necessary to reliably localize AE events. Therefore, AE signals were filtered by a newly developed post-processing protocol which significantly improves the localization results. On the smallest scale, results were confirmed with 3D micro-CT imaging, whereas on scales 2 and 3, results were compared with surface crack width measurements and resulting rebar corrosion levels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritabrata Dobe ◽  
Anuja Das ◽  
Rabibrata Mukherjee ◽  
Saibal Gupta

AbstractHydrous fluids play a vital role in the chemical and rheological evolution of ductile, quartz-bearing continental crust, where fluid percolation pathways are controlled by grain boundary domains. In this study, widths of grain boundary domains in seven quartzite samples metamorphosed under varying crustal conditions were investigated using Atomic Force Microscopy (AFM) which allows comparatively easy, high magnification imaging and precise width measurements. It is observed that dynamic recrystallization at higher metamorphic grades is much more efficient at reducing grain boundary widths than at lower temperature conditions. The concept of force-distance spectroscopy, applied to geological samples for the first time, allows qualitative estimation of variations in the strength of grain boundary domains. The strength of grain boundary domains is inferred to be higher in the high grade quartzites, which is supported by Kernel Average Misorientation (KAM) studies using Electron Backscatter Diffraction (EBSD). The results of the study show that quartzites deformed and metamorphosed at higher grades have narrower channels without pores and an abundance of periodically arranged bridges oriented at right angles to the length of the boundary. We conclude that grain boundary domains in quartz-rich rocks are more resistant to fluid percolation in the granulite rather than the greenschist facies.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Gamal A. Abdelhameed ◽  
Wael A. Ghanem ◽  
Simon H. Armanios ◽  
Tamer Nabil Abdelrahman

Abstract Background Cleft lip and palate is one of the commonest congenital anomalies, which have an impact on feeding, speech, and dental development away from the significant psychosocial sequel. Early surgical repair aims to restore appearance and function, and the modern techniques can leave many defects undetectable. Therefore, the anesthetic challenge facing the pediatric airway with such abnormalities is still of a great impact. The aim of our study among 189 patients enrolled is to correlate alveolar gap and maximum cleft width measurements as predictors of difficult laryngoscopy and intubation in infants with unilateral complete cleft lip/palate aging from 1 to 6 months. As a secondary outcome, their weight is to be correlated too as another parameter. Results The alveolar gap and maximum cleft width are both of equal high predictive power (p value ≤ 0.001) with 100% sensitivity for both and specificity of 76.10% and 82.39% respectively, with a cut off value of ≤ 10 mm and 11 mm for these dimensions respectively, and odds ratio of incidence of difficult intubation is 4.18 and 5.68 respectively, while body weight ≤ 5.75 kg has an odds ratio of 2.32. Conclusion Alveolar cleft and maximum cleft width can be used as predictors for anticipation of difficult laryngoscopy and intubation infant patients with unilateral complete cleft lip and palate, while body weight ≤ 5.75 kg increases the risk more than twice.


2018 ◽  
Vol 99 (6) ◽  
pp. 1405-1410
Author(s):  
Tana Verzuh ◽  
David L Bergman ◽  
Scott C Bender ◽  
Maggie Dwire ◽  
Stewart W Breck

1968 ◽  
Vol 20 (10) ◽  
pp. 505-508 ◽  
Author(s):  
R. J. Harris ◽  
W. B. Shuler ◽  
M. Eckhause ◽  
R. T. Siegel ◽  
R. E. Welsh
Keyword(s):  
X Ray ◽  

Author(s):  
Ömer Necati Cora ◽  
Muammer Koç ◽  
Peter J. Blau ◽  
Kunio Namiki

Despite the advantages of advanced high strength steels (AHSS), their stamping into functional lightweight parts demands prolonged die life, which necessitates the use of alternative substrates, coating materials, and/or surface conditioning to minimize and delay the die wear. In order to avoid frequent die replacement and surface quality problems on the stamped parts, the metalworking industry has been investigating various approaches such as reducing/refining the carbide particles, adding alloying elements, and elevating the hardness and toughness values for both substrate materials and coatings. The objective of this work was to investigate the effects of different coatings on the wear behavior of a some selected tool steel materials (die sample of interest) against two different AHSS sheet blanks through a cylinder-on-flat type reciprocating test method. After wear tests, both die sample and sheet blank surface were microscopically examined. Wear resistance of the slider was quantified from wear scar width measurements. Results showed that TD and CVD coated die samples performed better than the two other PVD coated samples.


Plant Disease ◽  
2017 ◽  
Vol 101 (11) ◽  
pp. 1843-1850 ◽  
Author(s):  
Brian S. Jordan ◽  
Albert K. Culbreath ◽  
Timothy B. Brenneman ◽  
Robert C. Kemerait ◽  
William D. Branch

Peanut (Arachis hypogaea) cultivars with resistance or tolerance to Cercospora arachidicola and/or Cercosporidium personatum, the causes of early and late leaf spot, respectively, are needed for organic production in the southeastern U.S. To determine the potential of new breeding lines for use in such production systems, field experiments were conducted in Tifton, GA, in 2014 and 2015 in which nine breeding lines and two cultivars, Georgia-06G and Georgia-12Y, were grown without foliar fungicide applications. In one set of trials, cultivar Georgia-12Y and most of the breeding lines evaluated had early season vigor ratings, early-season canopy width measurements, final plant populations, and pod yield that were greater than those of standard cultivar Georgia-06G. In those trials, final late leaf spot Florida scale ratings were lower and canopy reflectance measured as the normalized difference vegetation index (NDVI), was higher all the breeding lines than those of Georgia-06G. In another set of trials, two of those same breeding lines had final late leaf spot ratings similar to those of Georgia-12Y in 2014, whereas in 2015, six of those breeding lines had final leaf spot ratings that were lower than those of Georgia-12Y. Yields were similar for Georgia-12Y and all the breeding lines in the Gibbs Farm trials. Across years and breeding lines at the Lang Farm, the relationship between visual estimates of defoliation and NDVI was described by a two sector piecewise regression with NDVI decreasing more rapidly with increasing defoliation above approximately 89%. The utility of NDVI for spot comparisons among breeding lines appears to be limited to situations where there are differences in defoliation. Georgia-12Y and multiple breeding lines evaluated show potential for use in situations such as organic production where acceptable fungicides available for seed treatment and leaf spot control are limited.


2018 ◽  
Vol 41 (05) ◽  
pp. 544-549 ◽  
Author(s):  
Ladina Vonzun ◽  
Franziska Maria Winder ◽  
Martin Meuli ◽  
Ueli Moerlen ◽  
Luca Mazzone ◽  
...  

Abstract Purpose The aim of this study was to describe the sonographic evolution of fetal head circumference (HC) and width of the posterior horn of the lateral ventricle (Vp) after open fetal myelomeningocele (fMMC) repair and to assess whether pre- or postoperative measurements are helpful to predict the need for shunting during the first year of life. Patients & Methods All 30 children older than one year by January 2017 who previously had fMMC repair at the Zurich Center for Fetal Diagnosis and Therapy were included. Sonographic evolution of fetal HC and Vp before and after fMMC repair was assessed and compared between the non-shunted (N = 16) and the shunted group (N = 14). ROC curves were generated for the fetal HC Z-score and Vp in order to show their predictive accuracy for the need for shunting until 1 year of age. Results HC was not an independent factor for predicting shunting. However, the need for shunting was directly dependent on the preoperative Vp as well as the Vp before delivery. A Vp > 10 mm at evaluation for fMMC repair or > 15 mm before delivery identifies 100 % of the infants needing shunt placement at a false-positive rate of 44 % and 25 %, respectively. All fetuses with a Vp > 15 mm at first evaluation received a shunt. Conclusion Fetuses demonstrating a Vp of > 15 mm before in utero MMC repair are extremely likely to develop hydrocephalus requiring a shunt during the first year of life. This compelling piece of evidence must be appropriately integrated into prenatal counseling.


2011 ◽  
Vol 37 (3) ◽  
pp. 370-371 ◽  
Author(s):  
L. J. Salomon ◽  
G. E. Chalouhi ◽  
J. J. Stirnemann ◽  
J. P. Bernard ◽  
Y. Ville

Sign in / Sign up

Export Citation Format

Share Document