Synthetic Peptide Libraries: From Random Mixtures to In Vivo Testing

2020 ◽  
Vol 27 (6) ◽  
pp. 997-1016 ◽  
Author(s):  
Annamaria Sandomenico ◽  
Andrea Caporale ◽  
Nunzianna Doti ◽  
Simon Cross ◽  
Gabriele Cruciani ◽  
...  

Combinatorially generated molecular repertoires have been largely used to identify novel bioactive compounds. Ever more sophisticated technological solutions have been proposed to simplify and speed up such process, expanding the chemical diversity space and increasing the prospect to select new molecular entities with specific and potent activities against targets of therapeutic relevance. In this context, random mixtures of oligomeric peptides were originally used and since 25 years they represent a continuous source of bioactive molecules with potencies ranging from the sub-nM to microM concentration. Synthetic peptide libraries are still employed as starting “synthetic broths” of structurally and chemically diversified molecular fragments from which lead compounds can be extracted and further modified. Thousands of studies have been reported describing the application of combinatorial mixtures of synthetic peptides with different complexity and engrafted on diverse structural scaffolds for the identification of new compounds which have been further developed and also tested in in vivo models of relevant diseases. We briefly review some of the most used methodologies for library preparation and screening and the most recent case studies appeared in the literature where compounds have reached at least in vivo testing in animal or similar models. Recent technological advancements in biotechnology, engineering and computer science have suggested new options to facilitate the discovery of new bioactive peptides. In this instance, we anticipate here a new approach for the design of simple but focused tripeptide libraries against druggable cavities of therapeutic targets and its complementation with existing approaches.

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4774
Author(s):  
Eric E. Simanek

For two decades, methods for the synthesis and characterization of dendrimers based on [1,3,5]-triazine have been advanced by the group. Motivated by the desire to generate structural complexity on the periphery, initial efforts focused on convergent syntheses, which yielded pure materials to generation three. To obtain larger generations of dendrimers, divergent strategies were pursued using iterative reactions of monomers, sequential additions of triazine and diamines, and ultimately, macromonomers. Strategies for the incorporation of bioactive molecules using non-covalent and covalent strategies have been explored. These bioactive materials included small molecule drugs, peptides, and genetic material. In some cases, these constructs were examined in both in vitro and in vivo models with a focus on targeting prostate tumor subtypes with paclitaxel conjugates. In the materials realm, the use of triazine dendrimers anchored on solid surfaces including smectite clay, silica, mesoporous alumina, polystyrene, and others was explored for the separation of volatile organics from gas streams or the sequestration of atrazine from solution. The combination of these organics with metal nanoparticles has been probed. The goal of this review is to summarize these efforts.


Ulcers ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Michael Buenor Adinortey ◽  
Charles Ansah ◽  
Isaac Galyuon ◽  
Alexander Nyarko

Peptic ulcer is among the most serious gastrointestinal diseases in the world. Several orthodox drugs are employed for the treatment of the disease. Although these drugs are effective, they produce many adverse effects thus limiting their use. In recent years, there has been a growing interest in alternative therapies, especially those from plants due to their perceived relative lower side effects, ease of accessibility, and affordability. Plant medicines with ethnomedicinal use in peptic ulcer management need to be screened for their effectiveness and possible isolation of lead compounds. This requires use of appropriate animal models of various ulcers. The limited number of antiulcer models for drug development against gastric and duodenal ulcer studies has hindered the progress of targeted therapy in this field. It is, therefore, necessary to review the literature on experimental models used to screen agents with potential antigastroduodenal ulcer activity and explain their biochemical basis in order to facilitate their use in the development of new preventive and curative antiulcer drugs. Clinical trials can then be carried out on agents/drugs that show promise. In this paper, current in vivo animal models of ulcers and the pathophysiological mechanisms underlying their induction, their limitations, as well as the challenges associated with their use have been discussed.


2003 ◽  
Vol 963 (1-2) ◽  
pp. 214-223 ◽  
Author(s):  
Victor E Shashoua ◽  
David S Adams ◽  
Anne Boyer-Boiteau ◽  
Ann Cornell-Bell ◽  
Fuhai Li ◽  
...  

2021 ◽  
pp. 5-5
Author(s):  
Bogomir Prokic ◽  
Tijana Luzajic-Bozinovski ◽  
Vladimir Gajdov ◽  
Ivan Milosevic ◽  
Vera Todorovic ◽  
...  

The ethical dilemmas of using animals as in vivo models in preclinical and clinical examinations have been increasingly present in recent decades. Small laboratory animals (rats, rabbits) will continue to be used because they are cost-effective and permit the formation of statistically testable cohort groups; a task that, for financial, maintenance and care reasons, is almost prohibitive for larger animals. Technological advances in the production of new biomaterials for clinical use are enormous, but screening tests and methods used to assess biocompatibility lag behind these advances. The assessment of biological responses is slow and based on millennial recovery mechanisms in eukaryotic organisms. Therefore, the goal of researchers in this field is to re-evaluate old methods of biocompatibility assessment and introduce new methods of evaluation, especially for in vivo testing. In that sense, a revision of the ISO standards was planned and conducted in 2017, which insisted on cytotoxicity testing in cell lines and produced concrete proposals on how biocompatibility should be quantified. In vivo biocompatibility evaluation of biomaterials used for soft tissue recovery commonly utilises rats. Rabbits are recommended for implants used for hard tissues, because of the rabbit?s size, the possibility of implanting the biomaterials on a larger bone surface, and because of the peculiarities of rabbit bone tissue that favours rapid recovery after bone defects and enables easy reading of the results.


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 86 ◽  
Author(s):  
Alessia Giannetto ◽  
Emanuela Esposito ◽  
Marika Lanza ◽  
Sabrina Oliva ◽  
Kristian Riolo ◽  
...  

Fish waste utilization to obtain protein hydrolysates has been demonstrated to be a useful strategy to face both environmental and economic impacts while obtaining high-value products with remarkable biological and nutritional properties. In the present study, protein hydrolysates obtained from anchovy Engraulis encrasicolus (APH) by-products were assessed for their potential biological activities in both in vitro and in vivo models. The treatment with APH exerted a significant protection against LPS-induced inflammation in RAW 264.7 cells, decreasing the protein expression of pro-inflammatory mediators (i.e., COX-2) and inhibiting the nuclear translocation of NF-κB through IκB-α. Moreover, APH modulated the expression of iNOS, MnSOD and HO-1, thus decreasing the severity of oxidative stress. The supplementation of APH in the diet of ApoE knockout mice down-regulated the proinflammatory cytokines (i.e., TNF-α, IL-1α, IL-1β, IL-6) in both aorta and heart tissues, and modulated the expression of oxidative stress-related genes (Cu/ZnSod, MnSod, Cat, Gpx and Ho), indicating that APH can exert a beneficial role, having anti-inflammatory and antioxidant activities. The nutritional properties of APH, together with their biological activities herein reported, highlight the possibility of obtaining bioactive molecules from fish waste and encourage their use as potential nutraceuticals in food and pharmaceutical industries in the next future.


2015 ◽  
Vol 309 (1) ◽  
pp. F24-F28 ◽  
Author(s):  
Gentzon Hall ◽  
Rasheed A. Gbadegesin

Nephrotic syndrome (NS) is a clinicopathological entity characterized by proteinuria, hypoalbuminemia, peripheral edema, and hyperlipidemia. It is the most common cause of glomerular disease in children and adults. Although the molecular pathogenesis of NS is not completely understood, data from the study of familial NS suggest that it is a “podocytopathy.” Virtually all of the genes mutated in hereditary NS localize to the podocyte or its secreted products and the slit diaphragm. Since the completion of human genome sequence and the advent of next generation sequencing, at least 29 causes of single-gene NS have been identified. However, these findings have not been matched by therapeutic advances owing to suboptimal in vitro and in vivo models for the study of human glomerular disease and podocyte injury phenotypes. Multidisciplinary collaboration between clinicians, geneticists, cell biologists, and molecular physiologists has the potential to overcome this barrier and thereby speed up the translation of genetic findings into improved patient care.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10025-10025
Author(s):  
Matteo Maria Trucco ◽  
Breelyn A. Wilky ◽  
Ola Awad ◽  
Preeti Shah ◽  
Naheed Gul ◽  
...  

10025 Background: Chordoma is a rare primary bone malignancy that arises in the skull base, spine and sacrum and originates from remnants of the notochord. Therapy primarily consists of surgical resection and radiation. These tumors are typically resistant to conventional chemotherapy, and to date there are no FDA-approved agents for chordoma. The lack of in vivo models of chordoma has impeded the development of new therapies for this tumor. Methods: Primary tumor from a classic sacral chordoma was obtained, immediately processed into a single cell suspension and injected in to the parasacral area of a NOD/SCID/IL-2R gamma-null mouse, and tumor grew after 3 months. The NIH Chemical Genomics Center performed high-throughput screening of 2,816 compounds. Two established chordoma cell lines, U-CH1 and UCH2B, were treated and cell viability measured by CellTiter-Glo assay. Cells were incubated for 48 hours with drug concentrations ranging from 0.5nM to 46uM. The screen yielded several compounds that showed activity and two were tested in the xenograft. Results: We have established a xenograft model of dedifferentiated chordoma. High-throughput screening of compounds identified compounds that show activity against chordoma cell lines. In vivo testing of two identified compounds showed a dramatic reduction of tumor growth. Conclusions: We have established a xenograft model of dedifferentiated chordoma. High-throughput screening of compounds identified compounds that show activity against chordoma cell lines. In vivo testing of two identified compounds showed a dramatic reduction of tumor growth.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1784
Author(s):  
Alba Pensado-López ◽  
Juan Fernández-Rey ◽  
Pedro Reimunde ◽  
José Crecente-Campo ◽  
Laura Sánchez ◽  
...  

New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage–nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1719
Author(s):  
Ernesto Tinajero-Díaz ◽  
Daniela Salado-Leza ◽  
Carmen Gonzalez ◽  
Moisés Martínez Velázquez ◽  
Zaira López ◽  
...  

Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document