The Tangled Mitochondrial Metabolism in Cancer: An Innovative Pharmacological Approach

2020 ◽  
Vol 27 (13) ◽  
pp. 2106-2117 ◽  
Author(s):  
Patrizia Bottoni ◽  
Roberto Scatena

Background: Mitochondria are remarkably gaining significant and different pathogenic roles in cancer (i.e., to sustain specific metabolism, to activate signaling pathways, to promote apoptosis resistance, to favor cancer cell dissemination, and finally to facilitate genome instability). Interestingly, all these roles seem to be linked to the fundamental activity of mitochondria, i.e. oxidative metabolism. Intriguingly, a typical modification of mitochondrial oxidative metabolism and reactive oxygen species production/ neutralization seems to have a central role in all these tangled pathogenic roles in cancer. On these bases, a careful understanding of the molecular relationships between cancer and mitochondria may represent a fundamental step to realize therapeutic approaches blocking the typical cancer progression. The main aim of this review is to stress some neglected aspects of oxidative mitochondrial metabolism of cancer cells to promote more translational research with diagnostic and therapeutic potential. Methods: We reviewed the available literature regarding clinical and experimental studies on various roles of mitochondria in cancer, with attention to the cancer cell mitochondrial metabolism. Results: Mitochondria are an important source of reactive oxygen species. Their toxic effects seem to increase in cancer cells. However, it is not clear if damage depends on ROS overproduction and/or defect in detoxification. Failure of both these processes is likely a critical component of the cancer process and is strictly related to the actual microenvironment of cancer cells. Conclusions: Mitochondria, also by ROS production, have a fundamental pathogenetic role in promoting and maintaining cancer and its spreading. To carefully understand the tangled redox state of cancer cells mitochondria represents a fundamental step to realize therapeutic approaches blocking the typical cancer progression.

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 735 ◽  
Author(s):  
Vaishali Aggarwal ◽  
Hardeep Tuli ◽  
Ayşegül Varol ◽  
Falak Thakral ◽  
Mukerrem Yerer ◽  
...  

Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 457 ◽  
Author(s):  
Janina Frisch ◽  
Adrian Angenendt ◽  
Markus Hoth ◽  
Leticia Prates Roma ◽  
Annette Lis

The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H+, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5259
Author(s):  
Aaron J. Sorrin ◽  
Cindy Liu ◽  
Julia Cicalo ◽  
Jocelyn Reader ◽  
Daniel Najafali ◽  
...  

The combination of photodynamic agents and biological inhibitors is rapidly gaining attention for its promise and approval in treating advanced cancer. The activity of photodynamic treatment is mainly governed by the formation of reactive oxygen species upon light activation of photosensitizers. Exposure to reactive oxygen species above a threshold dose can induce cellular damage and cancer cell death, while the surviving cancer cells are “photodynamically primed”, or sensitized, to respond better to other drugs and biological treatments. Here, we report a new combination regimen of photodynamic priming (PDP) and prostaglandin E2 receptor 4 (EP4) inhibition that reduces the migration and invasion of two human ovarian cancer cell lines (OVCAR-5 and CAOV3) in vitro. PDP is achieved by red light activation of the FDA-approved photosensitizer, benzoporphyrin derivative (BPD), or a chemical conjugate composed of the BPD linked to cetuximab, an anti-epithelial growth factor receptor (EGFR) antibody. Immunoblotting data identify co-inhibition of EGFR, cAMP-response element binding protein (CREB), and extracellular signal-regulated kinase 1/2 (ERK1/2) as key in the signaling cascades modulated by the combination of EGFR-targeted PDP and EP4 inhibition. This study provides valuable insights into the development of a molecular-targeted photochemical strategy to improve the anti-metastatic effects of EP4 receptor antagonists.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuming Zou ◽  
Melika Sarem ◽  
Shengnan Xiang ◽  
Honggang Hu ◽  
Weidong Xu ◽  
...  

Abstract Background In the quest for new anti-cancer drugs, the drug discovery process has shifted to screening of active ingredients in traditional eastern medicine. Matrine is an active alkaloid isolated from plants of the Sophora genus used in traditional Chinese herbal medicine that exhibits a wide spectrum of biological properties and has a potential as an anti-proliferative agent. In this study, we investigated the anticancer property of MASM, ([(6aS, 10S, 11aR, 11bR, 11cS)210-Methylamino-dodecahydro-3a, 7a-diaza-benzo (de)anthracene-8-thione]), a potent derivative of matrine. Methods Four epithelial cancer cell lines representing the dominant cancers, namely: A549 (non-small-cell lung cancer cell line), MCF-7 and MDA-MB-231 (breast cancer cell lines), and Hela (cervical cancer cell line) were employed, and the mechanistic underpinning of MASM-induced apoptosis was investigated using flow cytometry, western blot and immunofluorescence. Results MASM, induced apoptosis via caspase 3 dependent and independent pathways, and autophagy in all the four cancer cell lines, but post-EMT (epithelial mesenchymal transition) cells showed greater sensitivity to MASM. Scavenging reactive oxygen species using N-acetylcysteine rescued all cancer cell lines from apoptosis and autophagy. Mechanistic analysis revealed that MASM induced autophagy involves inhibition of Akt signaling and the activation of Erk and p38 signaling, and inhibition of autophagy further enhanced the apoptosis induced by MASM. Conclusions These results indicate that MASM possesses potency against cancer cells and modulating autophagy during MASM administration could be used to further enhance its therapeutic effects.


2019 ◽  
Vol 18 (9) ◽  
pp. 1313-1322 ◽  
Author(s):  
Manjula Devi Ramamoorthy ◽  
Ashok Kumar ◽  
Mahesh Ayyavu ◽  
Kannan Narayanan Dhiraviam

Background: Reserpine, an indole alkaloid commonly used for hypertension, is found in the roots of Rauwolfia serpentina. Although the root extract has been used for the treatment of cancer, the molecular mechanism of its anti-cancer activity on hormonal independent prostate cancer remains elusive. Methods: we evaluated the cytotoxicity of reserpine and other indole alkaloids, yohimbine and ajmaline on Prostate Cancer cells (PC3) using MTT assay. We investigated the mechanism of apoptosis using a combination of techniques including acridine orange/ethidium bromide staining, high content imaging of Annexin V-FITC staining, flow cytometric quantification of the mitochondrial membrane potential and Reactive Oxygen Species (ROS) and cell cycle analysis. Results: Our results indicate that reserpine inhibits DNA synthesis by arresting the cells at the G2 phase and showed all standard sequential features of apoptosis including, destabilization of mitochondrial membrane potential, reduced production of reactive oxygen species and DNA ladder formation. Our in silico analysis further confirmed that indeed reserpine docks to the catalytic cleft of anti-apoptotic proteins substantiating our results. Conclusion: Collectively, our findings suggest that reserpine can be a novel therapeutic agent for the treatment of androgen-independent prostate cancer.


2014 ◽  
Vol 92 (11) ◽  
pp. 1119-1128 ◽  
Author(s):  
Christopher J. Hall ◽  
Leslie E. Sanderson ◽  
Kathryn E. Crosier ◽  
Philip S. Crosier

2020 ◽  
Vol 22 (1) ◽  
pp. 154
Author(s):  
Fasih Bintang Ilhami ◽  
Kai-Chen Peng ◽  
Yi-Shiuan Chang ◽  
Yihalem Abebe Alemayehu ◽  
Hsieh-Chih Tsai ◽  
...  

Development of stimuli-responsive supramolecular micelles that enable high levels of well-controlled drug release in cancer cells remains a grand challenge. Here, we encapsulated the antitumor drug doxorubicin (DOX) and pro-photosensitizer 5-aminolevulinic acid (5-ALA) within adenine-functionalized supramolecular micelles (A-PPG), in order to achieve effective drug delivery combined with photo-chemotherapy. The resulting DOX/5-ALA-loaded micelles exhibited excellent light and pH-responsive behavior in aqueous solution and high drug-entrapment stability in serum-rich media. A short duration (1–2 min) of laser irradiation with visible light induced the dissociation of the DOX/5-ALA complexes within the micelles, which disrupted micellular stability and resulted in rapid, immediate release of the physically entrapped drug from the micelles. In addition, in vitro assays of cellular reactive oxygen species generation and cellular internalization confirmed the drug-loaded micelles exhibited significantly enhanced cellular uptake after visible light irradiation, and that the light-triggered disassembly of micellar structures rapidly increased the production of reactive oxygen species within the cells. Importantly, flow cytometric analysis demonstrated that laser irradiation of cancer cells incubated with DOX/5-ALA-loaded A-PPG micelles effectively induced apoptotic cell death via endocytosis. Thus, this newly developed supramolecular system may offer a potential route towards improving the efficacy of synergistic chemotherapeutic approaches for cancer.


Author(s):  
Qian Wu ◽  
Youmei Li ◽  
Ying Li ◽  
Dong Wang ◽  
Ben Zhong Tang

Hydrogen peroxide (H2O2), as one kind of key reactive oxygen species (ROS), is mainly produced endogenously primarily in the mitochondria. The selective monitoring of H2O2 in living cells is of...


Sign in / Sign up

Export Citation Format

Share Document