Structure and functions of T-cell immunoglobulin-domain and mucin- domain protein 3 in cancer

2021 ◽  
Vol 28 ◽  
Author(s):  
Xinjie Lu

Background: T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling. Methods: This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types, and the rationale for TIM-3-targeted cancer immunotherapy. Results: TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models. Conclusion: TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.

2021 ◽  
Vol 12 ◽  
Author(s):  
Luis Felipe Olguín-Contreras ◽  
Anna N. Mendler ◽  
Grzegorz Popowicz ◽  
Bin Hu ◽  
Elfriede Noessner

Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.


2020 ◽  
Vol 8 (2) ◽  
pp. e001439 ◽  
Author(s):  
Rafael Cubas ◽  
Zia Khan ◽  
Qian Gong ◽  
Marina Moskalenko ◽  
Huizhong Xiong ◽  
...  

BackgroundCancer immunotherapy has evolved from interferon-alpha (IFNα) and interleukin-2 in the 1980s to CTLA-4 and PD-1/PD-L1 checkpoint inhibitors (CPIs), the latter highlighting the importance of enhancing T-cell functions. While the search for novel immunomodulatory pathways continues, combination therapies augmenting multiple pathways can also increase efficacy. The association of autoimmune-related adverse events with clinical efficacy following CPI treatment has been inferred and suggests that breaking tolerance thresholds associated with autoimmunity may affect host immune responses for effective cancer immunotherapy.ResultsHere, we show that loss of autoimmune associated PTPN22, a key desensitization node for multiple signaling pathways, including IFNα receptor (IFNAR) and T-cell receptor, can augment tumor responses. Implantation of syngeneic tumors in Ptpn22-/- mice led to expansion and activation of peripheral and intratumoral T cells and, in turn, spontaneous tumor regression as well as enhanced responses in combination with anti-PD-L1 treatment. Using genetically modified mice expressing a catalytically inactive PTPN22 or the autoimmunity-associated human single-nucleotide polymorphism variant, augmentation of antitumor immunity was dependent on PTPN22 phosphatase activity and partially on its adaptor functions. Further, antitumor responses were dependent on both CD4+ and CD8+T cells and, in part, IFNAR function. Finally, we demonstrate that the autoimmune susceptibility Ptpn22(C1858T) variant is associated with lower risk of developing non-melanoma skin cancers, improved overall survival and increased risk for development of hyperthyroidism or hypothyroidism following atezolizumab (anti-PD-L1) treatment.ConclusionsTogether, these data suggest that inhibition of PTPN22 phosphatase activity may provide an effective therapeutic option for cancer immunotherapy and that exploring genetic variants that shift immune tolerance thresholds may serve as a paradigm for finding new cancer immunotherapy targets.


2017 ◽  
Vol 35 (6_suppl) ◽  
pp. 472-472
Author(s):  
Haris Zahoor ◽  
Paul G Pavicic ◽  
Christopher Przybycin ◽  
Paul Elson ◽  
C. Marcela Diaz-Montero ◽  
...  

472 Background: T cell infiltration in tumors has been investigated as a biomarker of response to checkpoint inhibitors. A neo-adjuvant trial of checkpoint inhibition in locally-advanced RCC is ongoing at Cleveland Clinic, where T cell infiltration in pre-treatment renal mass bx will be compared to post-treatment nx specimens. However, there are no data regarding the association of T cell infiltration in matched bx and nx samples without intervening treatment. Understanding this association will enable further study of this potential biomarker in future neo-adjuvant studies. Methods: Matched bx and nx samples (without intervening systemic therapy) were identified from patients with non-metastatic RCC. Demographic and pathological data were collected from chart review. Selected tissue sections from bx and nx samples of each patient were reviewed, and marked for tumor and intra-tumoral lymphocytes by the pathologist. Immunohistochemistry (IHC) was utilized to stain these selected tissue sections for T cell markers (CD3, CD4 and CD8). Intra-tumoral T cells were then quantified in the pre-marked tissue sections as counts per total tumor area surveyed, using Image-Pro Plus (Media Cybernetics, Inc.). Spearman correlation (ρ) was used to measure the strength of association of T cell infiltration between matched samples. Results: 30 matched pairs were investigated. The median interval between bx and nx was 2.8 (0.2-87.7) months. Clear cell was the most common histology (29/30; 97%). 15/30 (50%) had grade 3-4 tumors, 2/19 (11%) patients had sarcomatoid features, 7/25 (29%) had necrosis, and 8/28 (29%) had lymphovascular invasion. We found a positive correlation between the frequencies of CD8+ T cells between matched bx and nx samples (ρ= 0.39; p=0.03). CD3+ and CD4+T cells did not show significant correlation. (Table) Conclusions: Bx material can be used to accurately assess the degree of CD8+T cell infiltration in RCC. [Table: see text]


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jue Lin ◽  
Joshua Cheon ◽  
Rashida Brown ◽  
Michael Coccia ◽  
Eli Puterman ◽  
...  

Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC) telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL) in CD4+, CD8+CD28+, and CD8+CD28− T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28− cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.


Cell Research ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 966-979 ◽  
Author(s):  
Mengze Lv ◽  
Meixia Chen ◽  
Rui Zhang ◽  
Wen Zhang ◽  
Chenguang Wang ◽  
...  

Abstract CD8+ T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8+ T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8+ T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8+ T cells. Mechanically, Mn2+ promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8+ T cell differentiation, activation and NK cell activation, and increased memory CD8+ T cells. Combining Mn2+ with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn2+ and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.


2019 ◽  
Vol 23 (5) ◽  
pp. 537-544 ◽  
Author(s):  
Arunima Sivanand ◽  
Philip Surmanowicz ◽  
Raed Alhusayen ◽  
Peter Hull ◽  
Ivan V Litvinov ◽  
...  

Mycosis fungoides (MF) and Sézary syndrome (SS) are chronic, progressive primary cutaneous T-cell lymphomas (CTCLs) for which there are no curative treatments. Skin-directed therapies, such as phototherapy, radiation therapy, or topical nitrogen mustard, provide only short-term remissions. Numerous attempts with different chemotherapeutic regimes failed to achieve meaningful clinical responses. Immunotherapy seems to be a promising avenue to achieve long-term disease control in CTCL. There is compelling evidence indicating that MF and SS are immunogenic lymphomas, which can be recognized by the patient’s immune system. However, CTCL uses different strategies to impair host’s immunity, eg, via repolarizing the T-cell differentiation from type I to type II, recruiting immunosuppressive regulatory T-cells, and limiting the repertoire of lymphocytes in the circulation. Many currently used therapies, such as interferon-α, imiquimod, extracorporeal phototherapy, and allogeneic bone marrow transplant, seem to exert their therapeutic effect via activation of the antitumor cytotoxic response and reconstitution of the host’s immune system. It is likely that novel immunotherapies such as immune checkpoint inhibitors, cancer vaccines, and chimeric antigen receptor-T cells will help to manage CTCL more efficiently. We also discuss how current genomic techniques, such as estimating the mutational load by whole genome sequencing and neoantigen calling, are likely to provide clinically useful information facilitating personalized immunotherapy of CTCL.


2020 ◽  
Vol 8 (2) ◽  
pp. e001224 ◽  
Author(s):  
Hussein Sultan ◽  
Juan Wu ◽  
Valentyna I Fesenkova ◽  
Aaron E Fan ◽  
Diane Addis ◽  
...  

BackgroundImmunotherapies, such as immune checkpoint inhibitors and adoptive cell therapies, have revolutionized cancer treatment and resulted in complete and durable responses in some patients. Unfortunately, most immunotherapy treated patients still fail to respond. Absence of T cell infiltration to the tumor site is one of the major obstacles limiting immunotherapy efficacy against solid tumors. Thus, the development of strategies that enhance T cell infiltration and broaden the antitumor efficacy of immunotherapies is greatly needed.MethodsWe used mouse tumor models, genetically deficient mice and vascular endothelial cells (VECs) to study the requirements for T cell infiltration into tumors.ResultsA specific formulation of poly-IC, containing poly-lysine and carboxymethylcellulose (PICLC) facilitated the traffic and infiltration of effector CD8 T cells into the tumors that reduced tumor growth. Surprisingly, intratumoral injection of PICLC was significantly less effective in inducing tumor T cell infiltration and controlling growth of tumors as compared with systemic (intravenous or intramuscular) administration. Systemically administered PICLC, but not poly-IC stimulated tumor VECs via the double-stranded RNA cytoplasmic sensor MDA5, resulting in enhanced adhesion molecule expression and the production of type I interferon (IFN-I) and T cell recruiting chemokines. Expression of IFNαβ receptor in VECs was necessary to obtain the antitumor effects by PICLC and IFN-I was found to directly stimulate the secretion of T cell recruiting chemokines by VECs indicating that this cytokine-chemokine regulatory axis is crucial for recruiting effector T cells into the tumor parenchyma. Unexpectedly, these effects of PICLC were mostly observed in tumors and not in normal tissues.ConclusionsThese findings have strong implications for the improvement of all types of T cell-based immunotherapies for solid cancers. We predict that systemic administration of PICLC will improve immune checkpoint inhibitor therapy, adoptive cell therapies and therapeutic cancer vaccines.


2020 ◽  
Author(s):  
Hyunwoo Kwon ◽  
Dongjun Chung ◽  
Satoshi Kaneko ◽  
Anqi Li ◽  
Lei Zhou ◽  
...  

AbstractMen and women show striking yet unexplained discrepancies in incidence, clinical presentation, and therapeutic response across different types of infectious/autoimmune diseases and malignancies1,2. For instance, bladder cancer shows a 4-fold male-biased incidence that persists after adjustment for known risk factors3,4. Here, we utilize murine bladder cancer models to establish that male-biased tumor burden is driven by sex differences in endogenous T cell immunity. Notably, sex differences exist in early fate decisions by intratumoral CD8+ T cells following their activation. While female CD8+ T cells retain their effector function, male counterparts readily adopt a Tcf1lowTim3− progenitor state that becomes exhausted over tumor progression. Human cancers show an analogous male-biased frequency of exhausted CD8+ T cells. Mechanistically, we describe an opposing interplay between CD8+ T cell intrinsic androgen and type I interferon5,6 signaling in Tcf1/Tcf7 regulation and formation of the progenitor exhausted T cell subset. Consistent with female-biased interferon response7, testosterone-dependent stimulation of Tcf1/Tcf7 and resistance to interferon occurs to a greater magnitude in male CD8+ T cells. Male-biased predisposition for CD8+ T cell exhaustion suggests that spontaneous rejection of early immunogenic bladder tumors is less common in males and carries implications for therapeutic efficacy of immune checkpoint inhibitors8,9.


ESMO Open ◽  
2020 ◽  
Vol 4 (Suppl 3) ◽  
pp. e000629 ◽  
Author(s):  
Angelika M. Starzer ◽  
Anna S. Berghoff

Cluster of differentiation 27 (CD27) is a member of the tumour necrosis factor receptor superfamily and plays a key role in T-cell activation by providing a costimulatory signal. Bound to its natural ligand CD70, CD27 signalling enhances T-cell proliferation and differentiation to effector and memory T cells and therefore has potential as an immune modulatory target in cancer treatment. The CD27 agonistic antibody varlilumab showed promising efficacy in haematological as well as solid cancers. Current studies investigate the combination of the CD27 agonistic antibody varlilumab in combination with the PD1 axis targeting immune checkpoint inhibitors like nivolumab or atezolizumab. Further, CD70 expression is used as a therapeutic target for ADCs, antibodies inducing ADCC, as well as the immunological target for chimeric antigen receptor gene-modified T cells and specific dendritic cell vaccination. In line with this, targeting the CD27 axis was shown to be feasible and safe in early clinical trials with the most commonly occurring side effects being thrombocytopenia, fatigue and nausea. In this mini review, we aimed to elucidate the immunobiology of CD27 and its potential as a target in cancer immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5542
Author(s):  
Osamu Yoshie

CCR4 is a chemokine receptor mainly expressed by T cells. It is the receptor for two CC chemokine ligands, CCL17 and CCL22. Originally, the expression of CCR4 was described as highly selective for helper T type 2 (Th2) cells. Later, its expression was extended to other T cell subsets such as regulatory T (Treg) cells and Th17 cells. CCR4 has long been regarded as a potential therapeutic target for allergic diseases such as atopic dermatitis and bronchial asthma. Furthermore, the findings showing that CCR4 is strongly expressed by T cell malignancies such as adult T cell leukemia/lymphoma (ATLL) and cutaneous T cell lymphomas (CTCLs) have led to the development and clinical application of the fully humanized and glyco-engineered monoclonal anti-CCR4 Mogamulizumab in refractory/relapsed ATLL and CTCLs with remarkable successes. However, Mogamulizumab often induces severe adverse events in the skin possibly because of its efficient depletion of Treg cells. In particular, treatment with Mogamulizumab prior to allogenic hematopoietic stem cell transplantation (allo-HSCT), the only curative option of these T cell malignancies, often leads to severe glucocorticoid-refractory graft-versus-host diseases. The efficient depletion of Treg cells by Mogamulizumab has also led to its clinical trials in advanced solid tumors singly or in combination with immune checkpoint inhibitors. The main focus of this review is CCR4; its expression on normal and malignant T cells and its significance as a therapeutic target in cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document