Non-coding RNA-Encoded Peptides/Proteins in Human Cancer: The Future for Cancer Therapy

2021 ◽  
Vol 28 ◽  
Author(s):  
Seyedeh Zahra Bakhti ◽  
Saeid Latifi-Navid

: Although non-coding RNAs (ncRNAs) were initially thought to be a class of RNA transcripts with no encoding capability, it has been established that some ncRNAs actually contain open reading frames (ORFs), which can be translated into micropeptides or microproteins. Recent studies have reported that ncRNAs-derived micropeptides/microproteins have regulatory functions on various biological and oncological processes. Some of these micropeptides/microproteins act as tumor inhibitors and some as tumor inducers. Understanding the carcinogenic role of ncRNAs-encoded micropeptides/microproteins seems to pose potential challenges to cancer research and offer promising practical perspectives on cancer treatment. In this review, we summarized the present information on the association of ncRNAs-derived micropeptides/microproteins with different types of human cancers. We also mentioned their carcinogenic mechanisms in cancer metabolism, signaling pathways, cell proliferation, angiogenesis, metastasis, and so on. Finally, we discussed the potential clinical value of these micropeptides/microproteins and their potential use in the diagnosis and treatment of cancer. This information may help discover, optimize, and develop new tools based on biological micropeptides/microproteins for the early diagnosis and development of anticancer drugs.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mujie Ye ◽  
Jingjing Zhang ◽  
Meng Wei ◽  
Baihui Liu ◽  
Kuiran Dong

Abstract Increasing evidence has indicated that long noncoding RNAs (lncRNAs) play various important roles in the development of cancers. The widespread applications of ribosome profiling and ribosome nascent chain complex sequencing revealed that some short open reading frames of lncRNAs have micropeptide-coding potential. The resulting micropeptides have been shown to participate in N6-methyladenosine modification, tumor angiogenesis, cancer metabolism, and signal transduction. This review summarizes current information regarding the reported roles of lncRNA-encoded micropeptides in cancer, and explores the potential clinical value of these micropeptides in the development of anti-cancer drugs and prognostic tumor biomarkers.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Kai Liu ◽  
Jiacheng Wu ◽  
...  

Background: Long non-coding RNA (lncRNA) breast cancer anti-estrogen resistance 4 (BCAR4) is a characterized oncogenic lncRNA in different cancers. This review is dedicated to summarize various molecular mechanisms of BCAR4 and demonstrate that the biological functions exerted by BCAR4 are good entry points for therapy. Methods: The molecular mechanism of BCAR4 acting on tumors is summarized by reviewing PubMed. Results: The expression of lncRNA BCAR4 is abnormally increased in all kinds of tumors, including colorectal cancer, prostate cancer, bladder cancer, gastric cancer, chondrosarcoma, glioma, breast cancer, glioma, gastric cancer, liver cancer, cervical cancer, lung cancer, etc. Besides, BCAR4 mediates multiple processes involved in carcinogenesis, including proliferation, invasion, anti-apoptosis, migration. Conclusion: BCAR4 may show great clinical value in this direction as a therapeutic cancer target.


Author(s):  
Yolan J. Reckman ◽  
Yigal M. Pinto

In the past two decades, our knowledge about non-coding DNA has increased tremendously. While non-coding DNA was initially discarded as ‘junk DNA’, we are now aware of the important and often crucial roles of RNA transcripts that do not translate into protein. Non-coding RNAs (ncRNAs) play important functions in normal cellular homeostasis and also in many diseases across all organ systems. Among the different ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been studied the most. In this chapter we discuss the role of miRNAs and lncRNAs in cardiac disease. We present examples of miRNAs with fundamental roles in cardiac development (miR-1), hypertrophy (myomiRs, miR-199, miR-1/133), fibrosis (miR-29, miR-21), myocardial infarction (miR-15, miR17~92), and arrhythmias/conduction (miR-1). We provide examples of lncRNAs related to cardiac hypertrophy (MHRT, CHRF), myocardial infarction (ANRIL, MIAT), and arrhythmias (KCNQ1OT1). We also discuss miRNAs and lncRNAs as potential therapeutic targets or biomarkers in cardiac disease.


2020 ◽  
Vol 21 (8) ◽  
pp. 2659
Author(s):  
Hong Zhang ◽  
Huan Guo ◽  
Weiguo Hu ◽  
Wanquan Ji

Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2148 ◽  
Author(s):  
Dominik A. Barth ◽  
Jaroslav Juracek ◽  
Ondrej Slaby ◽  
Martin Pichler ◽  
George A. Calin

Available systemic treatment options for cancers of the genitourinary system have experienced great progress in the last decade. However, a large proportion of patients eventually develop resistance to treatment, resulting in disease progression and shorter overall survival. Biomarkers indicating the increasing resistance to cancer therapies are yet to enter clinical routine. Long non-coding RNAs (lncRNA) are non-protein coding RNA transcripts longer than 200 nucleotides that exert multiple types of regulatory functions of all known cellular processes. Increasing evidence supports the role of lncRNAs in cancer development and progression. Additionally, their involvement in the development of drug resistance across various cancer entities, including genitourinary malignancies, are starting to be discovered. Consequently, lncRNAs have been suggested as factors in novel therapeutic strategies to overcome drug resistance in cancer. In this review, the existing evidences on lncRNAs and their involvement in mechanisms of drug resistance in cancers of the genitourinary system, including renal cell carcinoma, bladder cancer, prostate cancer, and testicular cancer, will be highlighted and discussed to facilitate and encourage further research in this field. We summarize a significant number of lncRNAs with proposed pathways in drug resistance and available reported studies.


2019 ◽  
Vol 20 (11) ◽  
pp. 2837 ◽  
Author(s):  
Clara Apicella ◽  
Camino S. M. Ruano ◽  
Céline Méhats ◽  
Francisco Miralles ◽  
Daniel Vaiman

In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.


Author(s):  
Kwei-Yan Liu ◽  
Li-Ting Wang ◽  
Shih-Hsien Hsu ◽  
Shen-Nien Wang

Hepatocellular carcinoma (HCC) is the fifth most common type of cancer, and is the third leading cause of cancer-related deaths each year. It involves a multi-step progression and is strongly associated with chronic inflammation induced by the intake of environmental toxins and/or viral infections (i.e., hepatitis B and C viruses). Although several genetic dysregulations are considered to be involved in disease progression, the detailed regulatory mechanisms are not well defined. Homeobox (Hox) genes that encode transcription factors with homeodomains control cell growth, differentiation, and morphogenesis in embryonic development. Recently, more aberrant expressions of Hox genes were found in a wide variety of human cancer, including HCC. In this review, we summarize the currently available evidence related to the role of Hox genes in the development of HCC. The objective is to determine the roles of this conserved transcription factor family and its potential use as a therapeutic target in future investigations.


2019 ◽  
Vol 5 (1) ◽  
pp. 15 ◽  
Author(s):  
Shrey Gandhi ◽  
Frank Ruehle ◽  
Monika Stoll

Cardiovascular diseases (CVDs) affect the heart and the vascular system with a high prevalence and place a huge burden on society as well as the healthcare system. These complex diseases are often the result of multiple genetic and environmental risk factors and pose a great challenge to understanding their etiology and consequences. With the advent of next generation sequencing, many non-coding RNA transcripts, especially long non-coding RNAs (lncRNAs), have been linked to the pathogenesis of CVD. Despite increasing evidence, the proper functional characterization of most of these molecules is still lacking. The exploration of conservation of sequences across related species has been used to functionally annotate protein coding genes. In contrast, the rapid evolutionary turnover and weak sequence conservation of lncRNAs make it difficult to characterize functional homologs for these sequences. Recent studies have tried to explore other dimensions of interspecies conservation to elucidate the functional role of these novel transcripts. In this review, we summarize various methodologies adopted to explore the evolutionary conservation of cardiovascular non-coding RNAs at sequence, secondary structure, syntenic, and expression level.


2017 ◽  
Vol 197 (4S) ◽  
Author(s):  
Kojiro Tashiro ◽  
Yuen-Yi Tseng ◽  
Badrinath Konety ◽  
Anindya Bagchi

Sign in / Sign up

Export Citation Format

Share Document