Trends in Nanomedicines for Cancer Treatment

2020 ◽  
Vol 26 (29) ◽  
pp. 3579-3600
Author(s):  
Tatielle do Nascimento ◽  
Adriane R. Todeschini ◽  
Ralph Santos-Oliveira ◽  
Mariana S. de Souza de Bustamante Monteiro ◽  
Vilênia T. de Souza ◽  
...  

Background: Cancer is characterized by abnormal cell growth and considered one of the leading causes of death around the world. Pharmaceutical Nanotechnology has been extensively studied for the optimization of cancer treatment. Objective: Comprehend the panorama of Pharmaceutical Nanotechnology in cancer treatment, through a survey about nanomedicines applied in clinical studies, approved for use and patented. Methods: Acknowledged products under clinical study and nanomedicines commercialized found in scientific articles through research on the following databases: Pubmed, Science Direct, Scielo and Lilacs. Derwent tool was used for patent research. Results: Nanomedicines based on nanoparticles, polymer micelles, liposomes, dendrimers and nanoemulsions were studied, along with cancer therapies such as Photodynamic Therapy, Infrared Phototherapy Hyperthermia, Magnetic Hyperthermia, Radiotherapy, Gene Therapy and Nanoimmunotherapy. Great advancement has been observed over nanotechnology applied to cancer treatment, mainly for nanoparticles and liposomes. Conclusion: The combination of drugs in nanosystems helps to increase efficacy and decrease toxicity. Based on the results encountered, nanoparticles and liposomes were the most commonly used nanocarriers for drug encapsulation. In addition, although few nanomedicines are commercially available, this specific research field is continuously growing.

2021 ◽  
Author(s):  
Samer Bayda ◽  
Emanuele Amadio ◽  
Simone Cailotto ◽  
Yahima Frión-Herrera ◽  
Alvise Perosa ◽  
...  

Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by...


2021 ◽  
pp. 2-2
Author(s):  
Mariia Pavlushenko ◽  
Roman Liubota ◽  
Roman Vereshchako ◽  
Nikolay Anikusko ◽  
Irina Liubota

The biggest challenge for the World Health Organization today is the fight against the COVID-19 pandemic. The current situation prompted major adjustments in the system of cancer care. In this review, we investigate the aspects of cancer treatment and care during the pandemic, since in this setting oncological services face challenges in determining the feasibility of anticancer treatments while minimizing the risk of infection. Cancer patients are at a higher risk from COVID-19 disease. Therefore, oncological community is discussing on the priorities for providing cancer therapies and care and at the same time minimizing the risk of infection.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1147
Author(s):  
Aleksandra Bienia ◽  
Olga Wiecheć-Cudak ◽  
Aleksandra Anna Murzyn ◽  
Martyna Krzykawska-Serda

Cancer is one of the leading causes of death in humans. Despite the progress in cancer treatment, and an increase in the effectiveness of diagnostic methods, cancer is still highly lethal and very difficult to treat in many cases. Combination therapy, in the context of cancer treatment, seems to be a promising option that may allow minimizing treatment side effects and may have a significant impact on the cure. It may also increase the effectiveness of anti-cancer therapies. Moreover, combination treatment can significantly increase delivery of drugs to cancerous tissues. Photodynamic therapy and hyperthermia seem to be ideal examples that prove the effectiveness of combination therapy. These two kinds of therapy can kill cancer cells through different mechanisms and activate various signaling pathways. Both PDT and hyperthermia play significant roles in the perfusion of a tumor and the network of blood vessels wrapped around it. The main goal of combination therapy is to combine separate mechanisms of action that will make cancer cells more sensitive to a given therapeutic agent. Such an approach in treatment may contribute toward increasing its effectiveness, optimizing the cancer treatment process in the future.


2017 ◽  
Vol 73 (1) ◽  
pp. 4-9
Author(s):  
Marcin Chodkowski ◽  
Joanna Cymerys ◽  
Anna Słońska ◽  
Marcin W. Bańbura

Cancer is one of the most frequent causes of death in Poland and in the world. The low efficacy of conventional treatment, as well as the high toxicity of the usual therapies, have stimulated the search for alternative methods. One of them is the deployment of oncolytic viruses. Oncolytic viruses have a natural ability to lyse tumor cells or can obtain this ability through certain modifications. The aim of virotherapy is to discover a virus that will lyse only tumor cells, and will not be dangerous to healthy cells, and moreover will not cause an undesirable response from the host’s immune system. Animal viruses with oncolytic abilities are very promising, because they are not pathogenic for humans and often show a high specificity for human cancerous cells.


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


2020 ◽  
Vol 3 (8) ◽  
pp. 2000007
Author(s):  
Lucia Salvioni ◽  
Stefania Zuppone ◽  
Francesco Andreata ◽  
Matteo Monieri ◽  
Serena Mazzucchelli ◽  
...  

2021 ◽  
Author(s):  
Esra Tanrıverdi Eçik ◽  
Onur BULUT ◽  
Hasan Hüseyin Kazan ◽  
Elif Şenkuytu ◽  
Bunyemin Cosut

Photodynamic therapy (PDT) is a promising strategy in cancer treatment with its relatively lower side effect profile. Undoubtedly, the key component of PDT is the photosensitizers with a high ability...


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Eve Robinson ◽  
Lawrence Lee ◽  
Leslie F. Roberts ◽  
Aurelie Poelhekke ◽  
Xavier Charles ◽  
...  

Abstract Background The Central African Republic (CAR) suffers a protracted conflict and has the second lowest human development index in the world. Available mortality estimates vary and differ in methodology. We undertook a retrospective mortality study in the Ouaka prefecture to obtain reliable mortality data. Methods We conducted a population-based two-stage cluster survey from 9 March to 9 April, 2020 in Ouaka prefecture. We aimed to include 64 clusters of 12 households for a required sample size of 3636 persons. We assigned clusters to communes proportional to population size and then used systematic random sampling to identify cluster starting points from a dataset of buildings in each commune. In addition to the mortality survey questions, we included an open question on challenges faced by the household. Results We completed 50 clusters with 591 participating households including 4000 household members on the interview day. The median household size was 7 (interquartile range (IQR): 4—9). The median age was 12 (IQR: 5—27). The birth rate was 59.0/1000 population (95% confidence interval (95%-CI): 51.7—67.4). The crude and under-five mortality rates (CMR & U5MR) were 1.33 (95%-CI: 1.09—1.61) and 1.87 (95%-CI: 1.37–2.54) deaths/10,000 persons/day, respectively. The most common specified causes of death were malaria/fever (16.0%; 95%-CI: 11.0–22.7), violence (13.2%; 95%-CI: 6.3–25.5), diarrhoea/vomiting (10.6%; 95%-CI: 6.2–17.5), and respiratory infections (8.4%; 95%-CI: 4.6–14.8). The maternal mortality ratio (MMR) was 2525/100,000 live births (95%-CI: 825—5794). Challenges reported by households included health problems and access to healthcare, high number of deaths, lack of potable water, insufficient means of subsistence, food insecurity and violence. Conclusions The CMR, U5MR and MMR exceed previous estimates, and the CMR exceeds the humanitarian emergency threshold. Violence is a major threat to life, and to physical and mental wellbeing. Other causes of death speak to poor living conditions and poor access to healthcare and preventive measures, corroborated by the challenges reported by households. Many areas of CAR face similar challenges to Ouaka. If these results were generalisable across CAR, the country would suffer one of the highest mortality rates in the world, a reminder that the longstanding “silent crisis” continues.


Sign in / Sign up

Export Citation Format

Share Document