Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives

2020 ◽  
Vol 23 (8) ◽  
pp. 687-698 ◽  
Author(s):  
Houda N. Washah ◽  
Elliasu Y. Salifu ◽  
Opeyemi Soremekun ◽  
Ahmed A. Elrashedy ◽  
Geraldene Munsamy ◽  
...  

For the past few decades, the mechanisms of immune responses to cancer have been exploited extensively and significant attention has been given into utilizing the therapeutic potential of the immune system. Cancer immunotherapy has been established as a promising innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help transform the treatment paradigm of several tumors by providing a therapeutically efficient method of cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the application of immunotherapy. Herein, we gave an insightful overview of the types of immunotherapy techniques used currently, their mechanisms of action, and discussed some bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides some future perspectives in the use of bioinformatics tools for immunotherapy.

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 66 ◽  
Author(s):  
Ana Teresa Silva ◽  
Clara M. Bento ◽  
Ana C. Pena ◽  
Luísa M. Figueiredo ◽  
Cristina Prudêncio ◽  
...  

Cinnamic acids are compounds of natural origin that can be found in many different parts of a wide panoply of plants, where they play the most diverse biological roles, often in a conjugated form. For a long time, this has been driving Medicinal Chemists towards the investigation of the therapeutic potential of natural, semi-synthetic, or fully synthetic cinnamic acid conjugates. These efforts have been steadily disclosing promising drug leads, but a wide chemical space remains that deserves to be further explored. Amongst different reported approaches, the combination or conjugation of cinnamic acids with known drugs has been addressed in an attempt to produce either synergistic or multi-target action. In this connection, the present review will focus on efforts of the past decade regarding conjugation with cinnamic acids as a tool for the rescuing or the repurposing of classical antimalarial drugs, and also on future perspectives in this particular field of research.


2019 ◽  
Vol 26 (13) ◽  
pp. 2330-2355 ◽  
Author(s):  
Anutthaman Parthasarathy ◽  
Sasikala K. Anandamma ◽  
Karunakaran A. Kalesh

Peptide therapeutics has made tremendous progress in the past decade. Many of the inherent weaknesses of peptides which hampered their development as therapeutics are now more or less effectively tackled with recent scientific and technological advancements in integrated drug discovery settings. These include recent developments in synthetic organic chemistry, high-throughput recombinant production strategies, highresolution analytical methods, high-throughput screening options, ingenious drug delivery strategies and novel formulation preparations. Here, we will briefly describe the key methodologies and strategies used in the therapeutic peptide development processes with selected examples of the most recent developments in the field. The aim of this review is to highlight the viable options a medicinal chemist may consider in order to improve a specific pharmacological property of interest in a peptide lead entity and thereby rationally assess the therapeutic potential this class of molecules possesses while they are traditionally (and incorrectly) considered ‘undruggable’.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 704
Author(s):  
Moumouni Konate ◽  
Jacob Sanou ◽  
Amos Miningou ◽  
David Kalule Okello ◽  
Haile Desmae ◽  
...  

Groundnut (Arachis hypogaea L.) is a major food and cash crop in Burkina Faso. Due to the growing demand for raw oilseeds, there is an increasing interest in groundnut production from traditional rain-fed areas to irrigated environments. However, despite implementation of many initiatives in the past to increase groundnut productivity and production, the groundnut industry still struggles to prosper due to the fact of several constraints including minimal development research and fluctuating markets. Yield penalty due to the presence of drought and biotic stresses continue to be a major drawback for groundnut production. This review traces progress in the groundnut breeding that started in Burkina Faso before the country’s political independence in 1960 through to present times. Up to the 1980s, groundnut improvement was led by international research institutions such as IRHO (Institute of Oils and Oleaginous Research) and ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). However, international breeding initiatives were not sufficient to establish a robust domestic groundnut breeding programme. This review also provides essential information about opportunities and challenges for groundnut research in Burkina Faso, emphasising the need for institutional attention to genetic improvement of the crop.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rakesh E. Mutha ◽  
Anilkumar U. Tatiya ◽  
Sanjay J. Surana

Abstract Background Natural plants and plant-derived formulations have been used by mankind from the ancient period of time. For the past few years, many investigations elaborated the therapeutic potential of various secondary chemicals present in the plants. Literature revealed that the various secondary metabolites, viz. phenolics and flavonoids, are responsible for a variety of therapeutic action in humans. Main body In the present review, an attempt has been made to compile the exploration of natural phenolic compounds with major emphasis on flavonoids and their therapeutic potential too. Interestingly, long-term intake of many dietary foods (rich in phenolics) proved to be protective against the development and management of diabetes, cancer, osteoporosis, cardiovascular diseases and neurodegenerative diseases, etc. Conclusion This review presents an overview of flavonoid compounds to use them as a potential therapeutic alternative in various diseases and disorders. In addition, the present understanding of phenolics and flavonoids will serve as the basis for the next scientific studies.


2020 ◽  
Vol 14 (1) ◽  
pp. 6
Author(s):  
Daehyun Kim ◽  
Seung Soo Lee ◽  
Hyungwon Moon ◽  
So Yeon Park ◽  
Hak Jong Lee

Cancer immunotherapy has revolutionized the way different neoplasms are treated. Among the different variations of cancer immunotherapy, the checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis have been validated and are currently used in the clinics. Nevertheless, these therapeutic antibodies are associated with significant side effects and are known to induce immune-related toxicities. To address these issues, we have developed an immune-microbubble complex (IMC) which not only reduces the toxicities associated with the antibodies but also enhances the therapeutic efficacy when combined with focused ultrasound. The concept of IMCs could be applied to any type of antibody-based treatment regimens to maximize their therapeutic potential.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 525
Author(s):  
Kwang-Soo Kim ◽  
Dong-Hwan Kim ◽  
Dong-Hyun Kim

Among various immunotherapies, natural killer (NK) cell cancer immunotherapy using adoptive transfer of NK cells takes a unique position by targeting tumor cells that evade the host immune surveillance. As the first-line innate effector cell, it has been revealed that NK cells have distinct mechanisms to both eliminate cancer cells directly and amplify the anticancer immune system. Over the last 40 years, NK cell cancer immunotherapy has shown encouraging reports in pre-clinic and clinic settings. In total, 288 clinical trials are investigating various NK cell immunotherapies to treat hematologic and solid malignancies in 2021. However, the clinical outcomes are unsatisfying, with remained challenges. The major limitation is attributed to the immune-suppressive tumor microenvironment (TME), low activity of NK cells, inadequate homing of NK cells, and limited contact frequency of NK cells with tumor cells. Innovative strategies to promote the cytolytic activity, durable persistence, activation, and tumor-infiltration of NK cells are required to advance NK cell cancer immunotherapy. As maturing nanotechnology and nanomedicine for clinical applications, there is a greater opportunity to augment NK cell therapeutic efficacy for the treatment of cancers. Active molecules/cytokine delivery, imaging, and physicochemical properties of nanoparticles are well equipped to overcome the challenges of NK cell cancer immunotherapy. Here, we discuss recent clinical trials of NK cell cancer immunotherapy, NK cell cancer immunotherapy challenges, and advances of nanoparticle-mediated NK cell therapeutic efficacy augmentation.


2012 ◽  
Vol 40 (4) ◽  
pp. 990-996 ◽  
Author(s):  
Ryan Spellecy ◽  
Thomas May

Deception, cheating, and loopholes within the IRB approval process have received significant attention in the past several years. Surveys of clinical researchers indicate common deception ranging from omitting information to outright lying, and controversy surrounding the FDA's decision not to ban “IRB shopping” (the practice of submitting protocols to multiple IRBs until one is found that will approve the protocol) has raised legitimate concerns about the integrity of the IRB process. One author has described a multicenter trial as being withdrawn from consideration at one institution when rejection was imminent, in order to avoid informing other IRBs reviewing the protocol of the study's rejection (a requirement under the federal regulations for emergency research with an exception from informed consent). This practice and IRB shopping seem at odds with the spirit, if not the “letter,” of the regulations. While at first blush these practices seem to cast aspersions on the integrity of clinical researchers, the moral issues raised go deeper than the ethics of cheating.


2003 ◽  
Vol 125 (1) ◽  
pp. 76-82 ◽  
Author(s):  
T. D. Short ◽  
R. Oldach

Solar (photovoltaic) powered water pumps could be a real instrument for the alleviation of water related deaths and illnesses in developing countries through the provision of clean water. However, despite the benefits that access to sustainable potable water supplies can bring, solar powered water pumps have a long way to go before they even begin to meet the needs of those who could use them. This paper addresses some of the complex, inter-related social and technical issues that have prevented solar powered water pumping from reaching its full potential and shows how future efforts should be directed in order to respond to these issues.


Sign in / Sign up

Export Citation Format

Share Document