Application of Contemporary Neuroproteomic Techniques in Unravelling Neurological Disorders

2020 ◽  
Vol 21 (12) ◽  
pp. 1146-1163
Author(s):  
Mallika Khurana ◽  
Syed Obaidur Rahman ◽  
Abul Kalam Najmi ◽  
Faheem Hyder Pottoo ◽  
Md Sayeed Akhtar

: Decades of research has stunned us with the very distinctive anatomy and physiology of our brain, and on the other hand, its complexity has always posed great difficulty in treating its dysfunction or damage. Understanding the brain under normal and, particularly in the diseased state, has always been very challenging and would have been impossible without proteomics. Neuroproteomic techniques have been extensively used for unraveling both dynamics and content of the proteome of our nervous system. This modern-day investigation and quantification of protein concentration and expression have given us a platform that enhances our knowledge on disease-associated processes and pathways modification and also leads to the identification of possible biomarkers that can be therapeutically targeted. With an increased interest in identifying and targeting possible biomarkers, this article focuses on describing applications of the much discussed neuroproteomics, with a significant role in the disease pathogenesis of some very common neurological disorders. This article will collectively discuss the use and relevance of neuroproteomics in a range of neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy, and psychiatric disorders. We have also attempted to present the current successes and failures of the neuroproteomics approach on the results obtained from different clinical studies that targeted biomarkers associated with any particular neurological disorder.

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2501 ◽  
Author(s):  
Phillips

Fasting is deeply entrenched in evolution, yet its potential applications to today’s most common, disabling neurological diseases remain relatively unexplored. Fasting induces an altered metabolic state that optimizes neuron bioenergetics, plasticity, and resilience in a way that may counteract a broad array of neurological disorders. In both animals and humans, fasting prevents and treats the metabolic syndrome, a major risk factor for many neurological diseases. In animals, fasting probably prevents the formation of tumors, possibly treats established tumors, and improves tumor responses to chemotherapy. In human cancers, including cancers that involve the brain, fasting ameliorates chemotherapy-related adverse effects and may protect normal cells from chemotherapy. Fasting improves cognition, stalls age-related cognitive decline, usually slows neurodegeneration, reduces brain damage and enhances functional recovery after stroke, and mitigates the pathological and clinical features of epilepsy and multiple sclerosis in animal models. Primarily due to a lack of research, the evidence supporting fasting as a treatment in human neurological disorders, including neurodegeneration, stroke, epilepsy, and multiple sclerosis, is indirect or non-existent. Given the strength of the animal evidence, many exciting discoveries may lie ahead, awaiting future investigations into the viability of fasting as a therapy in neurological disease.


2017 ◽  
Vol 19 (3) ◽  
pp. 349-377
Author(s):  
Leonardo Niro Nascimento

This article first aims to demonstrate the different ways the work of the English neurologist John Hughlings Jackson influenced Freud. It argues that these can be summarized in six points. It is further argued that the framework proposed by Jackson continued to be pursued by twentieth-century neuroscientists such as Papez, MacLean and Panksepp in terms of tripartite hierarchical evolutionary models. Finally, the account presented here aims to shed light on the analogies encountered by psychodynamically oriented neuroscientists, between contemporary accounts of the anatomy and physiology of the nervous system on the one hand, and Freudian models of the mind on the other. These parallels, I will suggest, are not coincidental. They have a historical underpinning, as both accounts most likely originate from a common source: John Hughlings Jackson's tripartite evolutionary hierarchical view of the brain.


Author(s):  
Meric Ozturk ◽  
Marit Nilsen-Hamilton ◽  
Muslum Ilgu

Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer's disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, prion dis-ease, or brain tumors. Diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theranostic applications to meet these needs. This review covers pioneer studies to apply aptamers, which show promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.


2021 ◽  
Vol 14 (12) ◽  
pp. 1260
Author(s):  
Meric Ozturk ◽  
Marit Nilsen-Hamilton ◽  
Muslum Ilgu

Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, prion disease, or brain tumors. The diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theragnostic applications to meet these needs. This review covers pioneering studies in applying aptamers, which shows promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.


2021 ◽  
pp. 135245852110641
Author(s):  
Gaetano Bernardi ◽  
Tiziana Biagioli ◽  
Paola Malpassi ◽  
Teresa De Michele ◽  
Domizia Vecchio ◽  
...  

Background: Cerebrospinal fluid (CSF) free light chains (FLCs) can be an alternative assay to oligoclonal bands (OCBs) in inflammatory neurological disorders, but threshold has no consensus. Objective: To assess the diagnostic accuracy of CSF FLCs in multiple sclerosis (MS) and other neurological diseases. Methods: A total of 406 patients from five Italian centers. FLCs were measured in CSF and serum using Freelite MX assays on Optilite. Results: A total of 171 patients were diagnosed as MS, 154 non-inflammatory neurological diseases, 48 inflammatory central nervous system (CNS) diseases, and 33 peripheral neurological diseases. Both kFLC and λFLC indices were significantly higher in patients with MS compared to other groups ( p < 0.0001). The kFLC index ⩾ 6.4 is comparable to OCB for MS diagnosis (area under the receiver operating characteristic curve (AUC) = 0.876; sensitivity 83.6% vs 84.2%; specificity 88.5% vs 90.6%). λFLC index ⩾ 5 showed an AUC of 0.616, sensitivity of 33.3% and specificity of 90.6%. In all, 12/27 (44.4%) MS patients with negative OCB had kFLC index ⩾ 6.4. Interestingly, 37.5% of 24 patients with a single CSF IgG band showed high kFLC index and 12.5% positive λFLC index. Conclusion: Our findings support the diagnostic utility of FLC indices in MS and other CNS inflammatory disorders, suggesting a combined use of FLC and OCB to help clinicians with complementary information.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Alessandro Galgani ◽  
Francesco Lombardo ◽  
Daniele Della Latta ◽  
Nicola Martini ◽  
Ubaldo Bonuccelli ◽  
...  

Abstract Purpose of Review Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. Recent findings LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. Summary LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1929 ◽  
Author(s):  
Salman Ul Islam ◽  
Adeeb Shehzad ◽  
Muhammad Bilal Ahmed ◽  
Young Sup Lee

Although the global prevalence of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’ entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution and particulate formulations has been demonstrated repeatedly in preclinical models, including in human trials. The key features determining the efficacy of drug delivery via the intranasal route include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface, enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the nasal cavity. This review describes important neurological disorders, challenges in drug delivery to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with intranasal transfer of drugs will increase with the development of more effective formulations and delivery devices.


1997 ◽  
Vol 3 (3) ◽  
pp. 184-190 ◽  
Author(s):  
P. Kivisäkk ◽  
GV Alm ◽  
WZ Tian ◽  
D. Matusevicius ◽  
S. Fredrikson ◽  
...  

Interferon-β-1b (IFN-β-1b) is an immunomodulatory therapy of multiple sclerosis (MS), reducing the numbers and severity of exacerbations and the total lesion load measured by magnetic resonance imaging of the brain. The benefits of IFN-β-1b could be hampered by the development of neutralising antibodies against the compound. Our results confirmed earlier studies, showing that 42% of MS patients treated with IFN-β-1b for more than 3 months had developed neutralising antibodies. The occurrence of binding anti-IFN-β-1b antibodies, presently not believed to impede the clinical efficacy of IFN-β-1b, were demonstrated by an immunoassay in some patients already after I month of treatment and in 78% after 3 months. The development of binding antibodies seemed to be an early phenomenon, preceding the appearance of neutralising antibodies. Antibodies crossreacting with IFN-β-1a and natural IFN-β were also found in a majority of IFN-β-1b treated patients with high titres of binding antibodies. Employing a solid-phase enzyme-linked immunospot (ELISPOT) assay, 68% of MS patients treated with IFN-β-1b for 1 -23 months had elevated numbers of anti-IFN-β-1b-antibody secreting cells in blood, compared to 18% of untreated MS patients and 20% among patients with other neurological diseases. Thus, our findings confirm that IFN-β-1 b is immunogenic in MS patients. High levels of anti-IFN-β-1b antibody secreting cells were, however, also found in two untreated control patients with inflammatory diseases, suggesting that anti-IFN-β-1b antibodies might also occur spontaneously.


2020 ◽  
Vol 26 (21) ◽  
pp. 2475-2491 ◽  
Author(s):  
Maria Morello ◽  
Massimo Pieri ◽  
Rossella Zenobi ◽  
Alessandra Talamo ◽  
Delphine Stephan ◽  
...  

Vitamin D is a steroid hormone implicated in the regulation of neuronal integrity and many brain functions. Its influence, as a nutrient and a hormone, on the physiopathology of the most common neurodegenerative diseases is continuously emphasized by new studies. This review addresses what is currently known about the action of vitamin D on the nervous system and neurodegenerative diseases such as Multiple Sclerosis, Alzheimer’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis. Further vitamin D research is necessary to understand how the action of this “neuroactive” steroid can help to optimize the prevention and treatment of several neurological diseases.


2021 ◽  
Vol 19 ◽  
Author(s):  
Gaigai Li ◽  
Prativa Sherchan ◽  
Zhouping Tang ◽  
Jiping Tang

: Autophagy and phagocytosis are two important endogenous lysosomal dependent clearing systems in the organism. In some neurological disorders, excessive autophagy or dysfunctional phagocytosis have been shown to contribute to brain injury. Recent studies have revealed that there are underlying interactions between these two processes. However, different studies show inconsistent results for the contribution of autophagy to the phagocytic process in diverse phagocytes and relatively little is known about the link between them especially in the brain. It is critical to understand the role that autophagy plays in phagocytic process in order to promote clearance of endogenous and exogenous detrimental materials. In this review, we highlight studies that focused on phagocytosis and autophagy occurring in the brain and summarized the possible regulatory roles of autophagy in the process of phagocytosis. Balancing the roles of autophagy and phagocytosis may be a promising therapeutic strategy for the treatment of some neurological diseases in the future.


Sign in / Sign up

Export Citation Format

Share Document