Advances in Ethnobotany, Synthetic Phytochemistry and Pharmacology of Endangered Herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020)

Author(s):  
Sharuti Mehta ◽  
Anil Kumar Sharma ◽  
Rajesh K. Singh

: Picrorhiza kurroa Royle ex Benth. (Family: Plantaginaceae) is a well-recognized an Ayurvedic herb. It is commonly called “Kutki” or “Kurro” and ‘Indian gentian’. Iridoid glycosides are the plant’s bioactive constituents and accountable for the bitter taste and medicinal properties of the plant. The iridoid glycosides such as picrosides and other active metabolites of the plant exhibited many pharmacological activities like hepatoprotective, antioxidant, anti-inflammatory, anticancer, immunomodulator, anti-ulcerative colitis, antimicrobial etc. This review aims to provide updated information on the ethnobotany, synthetic phytochemistry, pharmacological potential, safety and toxicology of P. kurroa and its active metabolites. Indiscriminate exploitation, ecological destruction of natural habitats, slower plant growth and unawareness regarding cultivation and uprooting of plants has brought kutki as an endangered status. So, various techniques used for the conservation and production of bioactive metabolites from P. kurroa have also been reported. Information on the plant has been collected from Science Direct, Google Scholar, PubMed, Scopus by using ‘Picrorhiza kurroa’, ‘Picroside-‘, ‘Picroside-II’, ‘Picroliv’, ‘Immunomodulator’ keywords. All studies on ethnobotany, phytochemistry and pharmacology of plant from 2010- 2020 were comprised in this review article. The possible directions for the future research have also been outlined in brief in review article.

2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2019 ◽  
Vol 20 (5) ◽  
pp. 376-389 ◽  
Author(s):  
Sonali Mishra ◽  
Nupur Srivastava ◽  
Velusamy Sundaresan ◽  
Karuna Shanker

Background: Decalepis arayalpathra (J. Joseph and V. Chandras.) Venter is used primarily for nutrition besides its therapeutic values. Traditional preparations/formulations from its tuber are used as a vitalizer and blood purifier drink. The folklore medicinal uses cover inflammation, cough, wound healing, antipyretic, and digestive system management. A comprehensive review of the current understanding of the plant is required due to emerging concerns over its safety and efficacy. Objective: The systematic collection of the authentic information from different sources with the critical discussion is summarised in order to address various issues related to botanical identity, therapeutic medicine, nutritional usage, phytochemical, and pharmacological potentials of the D. arayalpathra. Current use of traditional systems of medicine can be used to expand future research opportunities. Materials and Methods: Available scripted information was collected manually, from peered review research papers and international databases viz. Science Direct, Google Scholar, SciFinder, Scopus, etc. The unpublished resources which were not available in database were collected through the classical books of ‘Ayurveda’ and ‘Siddha’ published in regional languages. The information from books, Ph.D. and MSc dissertations, conference papers and government reports were also collected. We thoroughly screened the scripted information of classical books, titles, abstracts, reports, and full-texts of the journals to establish the reliability of the content. Results: Tuber bearing vanilla like signature flavor is due to the presence of 2-hydroxy-4-methoxybenzaldehyde (HMB). Among five other species, Decalepis arayalpathra (DA) has come under the ‘critically endangered’ category, due to over-exploitation for traditional, therapeutic and cool drink use. The experimental studies proved that it possesses gastro-protective, anti-tumor, and antiinflammatory activities. Some efforts were also made to develop better therapeutics by logical modifications in 2-Hydroxy-4-methoxy-benzaldehyde, which is a major secondary metabolite of D. arayalpathra. ‘Amruthapala’ offers the enormous opportunity to develop herbal drink with health benefits like gastro-protective, anti-oxidant and anti-inflammatory actions. Results: The plant has the potential to generate the investigational new lead (IND) based on its major secondary metabolite i.e. 2-Hydroxy-4-methoxy-benzaldehyde. The present mini-review summarizes the current knowledge on Decalepis arayalpathra, covering its phytochemical diversity, biological potentials, strategies for its conservation, and intellectual property rights (IPR) status. Chemical Compounds: 2-hydroxy-4-methoxybenzaldehyde (Pubchem CID: 69600), α-amyrin acetate (Pubchem CID: 293754), Magnificol (Pubchem CID: 44575983), β-sitosterol (Pubchem CID: 222284), 3-hydroxy-p-anisaldehyde (Pubchem CID: 12127), Naringenin (Pubchem CID: 932), Kaempferol (Pubchem CID: 5280863), Aromadendrin (Pubchem CID: 122850), 3-methoxy-1,2-cyclopentanedione (Pubchem CID: 61209), p-anisaldehyde (Pubchem CID: 31244), Menthyl acetate (Pubchem CID: 27867), Benzaldehyde (Pubchem CID: 240), p-cymene (Pubchem CID: 7463), Salicylaldehyde (Pubchem CID: 6998), 10-epi-γ-eudesmol (Pubchem CID: 6430754), α -amyrin (Pubchem CID: 225688), 3-hydroxy-4-methoxy benzaldehyde (Pubchem CID: 12127).


Author(s):  
Mohammad Abdul Kader ◽  
Ashutus Singha ◽  
Mili Amena Begum ◽  
Arif Jewel ◽  
Ferdous Hossain Khan ◽  
...  

Abstract Agricultural water resources have been limited over the years due to global warming and irregular rainfall in the arid and semi-arid regions. To mitigate the water stress in agriculture, mulching has a crucial impact as a water-saving technique in rain-fed crop cultivation. It is important mainly for preserving soil moisture, relegating soil temperature, and limiting soil evaporation, which affects the crop yield. Mulching has many strategic effects on soil ecosystem, crop growth, and climate. Mulch insulates the soil, helping to provide a buffer from cold and hot temperatures that have a crucial activity in creating beautiful and protected landscapes. This study has accumulated a series of information about both organic and plastic mulch materials and its applicability on crop cultivation. Moreover, future research potentials of mulching with modeling were discussed to quantify water loss in agriculture.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3092
Author(s):  
Rasha El-Shafei ◽  
Hala Hegazy ◽  
Bishnu Acharya

Non-conventional extraction of bioactive metabolites could provide sustainable alternative techniques to preserve the potency of antioxidants and antiviral compounds extracted from macro-algae. In this paper, we first reviewed the antioxidant and antiviral potential of the active metabolites that exist in the three known macro-algae classes; Phaeophyceae, Rhodophyceae, and Chlorophyceae, and a comparison between their activities is discussed. Secondly, a review of conventional and non-conventional extraction methods is undertaken. The review then focused on identifying the optimal extraction method of sulphated polysaccharide from macro-algae that exhibits both antiviral and antioxidant activity. The review finds that species belonging to the Phaeophyceae and Rhodophceae classes are primarily potent against herpes simplex virus, followed by human immunodeficiency virus and influenza virus. At the same time, species belonging to Chlorophyceae class are recorded by most of the scholars to have antiviral activity against herpes simplex virus 1. Additionally, all three macro-algae classes exhibit antioxidant activity, the potency of which is a factor of the molecular structure of the bioactive metabolite as well as the extraction method applied.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4304
Author(s):  
Markssuel Teixeira Marvila ◽  
Afonso Rangel Garcez de de Azevedo ◽  
Paulo R. de de Matos ◽  
Sergio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

This review article proposes the identification and basic concepts of materials that might be used for the production of high-performance concrete (HPC) and ultra-high-performance concrete (UHPC). Although other reviews have addressed this topic, the present work differs by presenting relevant aspects on possible materials applied in the production of HPC and UHPC. The main innovation of this review article is to identify the perspectives for new materials that can be considered in the production of novel special concretes. After consulting different bibliographic databases, some information related to ordinary Portland cement (OPC), mineral additions, aggregates, and chemical additives used for the production of HPC and UHPC were highlighted. Relevant information on the application of synthetic and natural fibers is also highlighted in association with a cement matrix of HPC and UHPC, forming composites with properties superior to conventional concrete used in civil construction. The article also presents some relevant characteristics for the application of HPC and UHPC produced with alkali-activated cement, an alternative binder to OPC produced through the reaction between two essential components: precursors and activators. Some information about the main types of precursors, subdivided into materials rich in aluminosilicates and rich in calcium, were also highlighted. Finally, suggestions for future work related to the application of HPC and UHPC are highlighted, guiding future research on this topic.


2018 ◽  
Vol 373 (1740) ◽  
pp. 20160508 ◽  
Author(s):  
Sarah Benson-Amram ◽  
Geoff Gilfillan ◽  
Karen McComb

Playback experiments have proved to be a useful tool to investigate the extent to which wild animals understand numerical concepts and the factors that play into their decisions to respond to different numbers of vocalizing conspecifics. In particular, playback experiments have broadened our understanding of the cognitive abilities of historically understudied species that are challenging to test in the traditional laboratory, such as members of the Order Carnivora. Additionally, playback experiments allow us to assess the importance of numerical information versus other ecologically important variables when animals are making adaptive decisions in their natural habitats. Here, we begin by reviewing what we know about quantity discrimination in carnivores from studies conducted in captivity. We then review a series of playback experiments conducted with wild social carnivores, including African lions, spotted hyenas and wolves, which demonstrate that these animals can assess the number of conspecifics calling and respond based on numerical advantage. We discuss how the wild studies complement those conducted in captivity and allow us to gain insights into why wild animals may not always respond based solely on differences in quantity. We then consider the key roles that individual discrimination and cross-modal recognition play in the ability of animals to assess the number of conspecifics vocalizing nearby. Finally, we explore new directions for future research in this area, highlighting in particular the need for further work on the cognitive basis of numerical assessment skills and experimental paradigms that can be effective in both captive and wild settings. This article is part of a discussion meeting issue ‘The origins of numerical abilities’.


2021 ◽  
Author(s):  
ANJALI KHARB ◽  
Shilpa Sharma ◽  
Ashish Sharma ◽  
Neeti Nirwal ◽  
Roma Pandey ◽  
...  

Abstract BackgroundPicrorhiza kurroa has been reported as an age-old ayurvedic hepatoprotection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons, uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s.Methods and results In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based ‘shoots-only’ system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qPCR has shortlisted six putative ‘P-II-forming’ ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II., implying that this could be potential AT decorating final structure of P-II. ConclusionOrgan-wise comparative transcriptome mining coupled with reverse transcription real time qPCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


2020 ◽  
Vol 12 (13) ◽  
pp. 16736-16741
Author(s):  
Iliyasu Simon ◽  
Jennifer Che ◽  
Lynne Baker

Globally, colleges and universities are increasingly mandating sustainability and environmental protection into their practices.  To date, such institutions have focused their efforts on recycling and energy-use reduction and less on the management and conservation of wildlife and wildlife habitats. However, in an increasingly urbanizing world, well-managed campuses can provide habitat and even refuge for wildlife species.  On the campus of a sustainability-minded university in Nigeria, we used camera traps to determine the presence of wildlife and used occupancy modeling to evaluate factors that influenced the detectability and habitat use of two mammals for which we had sufficient detections: White-tailed Mongoose Ichneumia albicauda and Gambian Rat Cricetomys gambianus.  Our intent was to gather baseline data on campus wildlife to inform future research and make recommendations for maintaining wildlife populations.  We detected wildlife primarily within less-disturbed areas that contained a designated nature area, and the presence of a nature area was the key predictor variable influencing habitat use.  No measured variables influenced detectability.  This study supports other research that highlights the importance of undisturbed or minimally disturbed natural habitats on university campuses for wildlife, especially in increasingly built-up and developed regions.  We recommend that institutions of higher education devote greater resources to making campuses wildlife-friendly and increase opportunities for students to engage in campus-based wildlife research and conservation and other sustainability-related programs. 


Sign in / Sign up

Export Citation Format

Share Document