scholarly journals A systematic review of traditionally used herbs and animal-derived products as potential analgesics

2020 ◽  
Vol 18 ◽  
Author(s):  
Kannan RR Rengasamy ◽  
Mohamad Fawzi Mahomoodally ◽  
Teshika Joaheer ◽  
Yansheng Zhang

: Pain is a distressing but fundamental manifestation that prepares the body for potentially detrimental stimuli while ensuring its protection. Plant and animal products have traditionally been used to relieve pain for centuries. However, no attempt has been made to compile a single report of plant and animal products possessing analgesic properties. This review enadeavours to recover data from published articles to establish a collective literature review on folk remedies from plant and animal sources used as analgesics and in the treatment of pain-related conditions, identifying gaps in existing knowledge and future works. Relevant information was systematically retrieved using the PRISMA method. In this review, in total, 209 plants were found to be either used raw or prepared by decoctions or maceration. Administration was either oral or topical, and they were predominantly used in Asian countries. In vivo studies of plants with analgesic properties, which were tested using different methods including acetic-induced writhing test, hotplate test, tail-flick test, and formalin-induced pain test, were compiled. Animal products with analgesic properties were obtained mainly from compounds present in venom; their bioactive compounds were also identified. In the literature search, certain gaps were noted, which could be reviewed in future studies. For instance, there was a disparity of information regarding the traditional uses of medicinal plants. In this review, an attempt was made to critically assess and describe the pharmacological properties and bioactive composition of indigenous plants, some animal species, and animal venom by scrutinizing databases and looking for published articles. Therefore, it can be concluded that the compounds obtained from these sources can serve as important ingredients in therapeutic agents to alleviate pain once their limitations are assessed and improved upon. In the literature search, certain gaps were noted, which could be reviewed in future studies.

2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


2020 ◽  
Author(s):  
Kui Wu ◽  
Nathan Yee ◽  
Sangeetha Srinivasan ◽  
Amir Mahmoodi ◽  
Michael Zakharian ◽  
...  

<div> <div> <div> <p>A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In contrast to antibodies (mAbs, ADCs) and other targeted approaches, the mechanism of action is based on in vivo click chemistry, and is thus independent of tumor biomarker expression or factors such as enzymatic activity, pH, or oxygen levels. The platform consists of a tetrazine-modified sodium hyaluronate-based biopolymer injected at a tumor site, followed by one or more doses of a trans-cyclooctene (TCO)- modified cytotoxic protodrug with attenuated activity administered systemically. The protodrug is captured locally by the biopolymer through an inverse electron-demand Diels-Alder reaction between tetrazine and TCO, followed by conversion to the active drug directly at the tumor site, thereby overcoming the systemic limitations of conventional chemotherapy or the need for specific biomarkers of traditional targeted therapy. Here, TCO-modified protodrugs of four prominent cytotoxics (doxorubicin, paclitaxel, etoposide and gemcitabine) are used, highlighting the modularity of the CAPAC platform. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. Studies in rodents show that a single injection of the tetrazine-modified biopolymer, SQL70, efficiently captures SQP33 protodrug doses given at 10.8-times the maximum tolerated dose of conventional doxorubicin with greatly reduced systemic toxicity. </p> </div> </div> </div>


Nanomedicine ◽  
2021 ◽  
Author(s):  
Milad Ghorbani ◽  
Zhila Izadi ◽  
Samira Jafari ◽  
Eudald Casals ◽  
Foroogh Rezaei ◽  
...  

The wide prevalence of oxidative stress-induced diseases has led to a growing demand for antioxidant therapeutics worldwide. Nanozyme antioxidants are drawing enormous attention as practical alternatives for conventional antioxidants. The considerable body of research over the last decade and the promising results achieved signify the potential of nanozyme antioxidants to secure a place in the expanding market of antioxidant therapeutics. Nonetheless, there is no report on clinical trials for their further evaluation. Through analyzing in-depth selected papers which have conducted in vivo studies on nanozyme antioxidants, this review aims to pinpoint and discuss possible reasons impeding development of research toward clinical studies and to offer some practical solutions for future studies to bridge the gap between preclinical and clinical stages.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 300 ◽  
Author(s):  
Ziyu Chen ◽  
Sunggi Noh ◽  
Rhonda D. Prisby ◽  
Jeong-Bong Lee

Modulations of fluid flow inside the bone intramedullary cavity has been found to stimulate bone cellular activities and augment bone growth. However, study on the efficacy of the fluid modulation has been limited to external syringe pumps connected to the bone intramedullary cavity through the skin tubing. We report an implantable magnetic microfluidic pump which is suitable for in vivo studies in rodents. A compact microfluidic pump (22 mm diameter, 5 mm in thickness) with NdFeB magnets was fabricated in polydimethylsiloxane (PDMS) using a set of stainless-steel molds. An external actuator with a larger magnet was used to wirelessly actuate the magnetic microfluidic pump. The characterization of the static pressure of the microfluidic pump as a function of size of magnets was assessed. The dynamic pressure of the pump was also characterized to estimate the output of the pump. The magnetic microfluidic pump was implanted into the back of a Fischer-344 rat and connected to the intramedullary cavity of the femur using a tube. On-demand wireless magnetic operation using an actuator outside of the body was found to induce pressure modulation of up to 38 mmHg inside the femoral intramedullary cavity of the rat.


2018 ◽  
Vol 25 (36) ◽  
pp. 4740-4757 ◽  
Author(s):  
Ashita Sharma ◽  
Mandeep Kaur ◽  
Jatinder Kaur Katnoria ◽  
Avinash Kaur Nagpal

Polyphenols are a group of water-soluble organic compounds, mainly of natural origin. The compounds having about 5-7 aromatic rings and more than 12 phenolic hydroxyl groups are classified as polyphenols. These are the antioxidants which protect the body from oxidative damage. In plants, they are the secondary metabolites produced as a defense mechanism against stress factors. Antioxidant property of polyphenols is suggested to provide protection against many diseases associated with reactive oxygen species (ROS), including cancer. Various studies carried out across the world have suggested that polyphenols can inhibit the tumor generation, induce apoptosis in cancer cells and interfere in progression of tumors. This group of wonder compounds is present in surplus in natural plants and food products. Intake of polyphenols through diet can scavenge ROS and thus can help in cancer prevention. The plant derived products can also be used along with conventional chemotherapy to enhance the chemopreventive effects. The present review focuses on various in vitro and in vivo studies carried out to assess the anti-carcinogenic potential of polyphenols present in our food. Also, the pathways involved in cancer chemopreventive effects of various subclasses (flavonoids, lignans, stilbenes and phenolic acids) of polyphenols are discussed.


Author(s):  
Pia Schneeweiss ◽  
Dorin Panescu ◽  
Dominik Stunder ◽  
Mark W. Kroll ◽  
Christopher J. Andrews ◽  
...  

AbstractElectric contact currents (CC) can cause muscle contractions, burns, or ventricular fibrillation which may result in life-threatening situations. In vivo studies with CC are rare due to potentially hazardous effects for participants. Cadaver studies are limited to the range of tissue’s electrical properties and the utilized probes’ size, relative position, and sensitivity. Thus, the general safety standards for protection against CC depend on a limited scientific basis. The aim of this study was therefore to develop an extendable and adaptable validated numerical body model for computational CC dosimetry for frequencies between DC and 1 MHz. Applying the developed model for calculations of the IEC heart current factors (HCF) revealed that in the case of transversal CCs, HCFs are frequency dependent, while for longitudinal CCs, the HCFs seem to be unaffected by frequency. HCFs for current paths from chest or back to hand appear to be underestimated by the International Electrotechnical Commission (IEC 60479-1). Unlike the HCFs provided in IEC 60479-1 for longitudinal current paths, our work predicts the HCFs equal 1.0, possibly due to a previously unappreciated current flow through the blood vessels. However, our results must be investigated by further research in order to make a definitive statement. Contact currents of frequencies from DC up to 100 kHz were conducted through the numerical body model Duke by seven contact electrodes on longitudinal and transversal paths. The resulting induced electric field and current enable the evaluation of the body impedance and the heart current factors for each frequency and current path.


Blood ◽  
1971 ◽  
Vol 38 (3) ◽  
pp. 360-371 ◽  
Author(s):  
PETER HERSEY

Abstract This study looks at the application of 51Cr labeling of lymphocytes as a method of obtaining in vivo information about the lymphocyte in human beings. Lymphocytes were separated from whole blood by methods based on isopycnic and rate zonal centrifugation techniques and the conditions for 51Cr uptake by the separated lymphocytes standardized to enable a known amount of radioactivity to be injected into the subjects under study. The uptake of the label into various sites in the body was studied by the means of surface probes linked synchronously to a digital printout device and the survival in the circulation estimated by scintillation counting of blood samples taken at various times after injection of the label. The in vivo studies of survival and migration in 10 normal subjects show an initial rapid clearance of cells from the circulation associated with an uptake of cells into spleen and liver sites, and to a lesser extent, into sites over bone marrow and the abdomen. Survival of the circulating lymphocytes after this period appears to be relatively short, with a half-life of 1.7 days. As the available evidence suggests, this short life may be due to the differential trapping of short-lived lymphocytes in the circulation at the expense of the long-lived lymphocytes. Kinetic interpretations of the data indicate an inverse exponential uptake of cells into the sites studied, and the decline over the organs appears to follow the death rate of the cells in the body as a whole. Comparisons with studies in patients having chronic lymphatic leukemia show a relative inability of leukemic lymphocytes to leave the circulation and enter some sites in the body. These preliminary studies indicate the potential of 51Cr labeling as a useful clinical research tool in the study of lymphocytes in human beings.


2014 ◽  
Vol 902 ◽  
pp. 70-75 ◽  
Author(s):  
Aroonsri Priprem ◽  
Vassana Netweera ◽  
Pramote Mahakunakorn ◽  
Nutjaree Pratheepawanit Johns ◽  
Jeffrey Roy Johns

Melatonin, encapsulated and non-encapsulated, in a topical gel, was comparatively investigated for its in vitro permeation and in vivo anti-inflammatory properties. An average size of the melatonin-encapsulated niosomes of 197 nm with a zeta potential of-78.8 mV and an entrapment efficiency of 92.7% was incorporated into a gel base. In vitro skin permeation of the same gel base incorporated with non-encapsulated melatonin or melatonin niosomes at 5% was comparatively evaluated through porcine skin using Franz diffusion cells and analyzed by spectroflurometry at λex 278 and λem 348 nm. From the same gel base, the permeation rate of non-encapsulated melatonin was about 2.5 times greater than that of melatonin-encapsulated niosomes. In comparison to piroxicam gel and hydrocortisone cream used as the positive controls, topical applications of melatonin and melatonin niosome gels tested in croton oil-induced ear edema in mice suggested that its anti-inflammatory activities were prolonged by the niosomal encapsulation. Similarly, analgesic effect of melatonin was prolonged by niosomal encapsulation using tail flick test in mice. Therefore, its immediate permeation through the skin was retarded by niosomal encapsulation which could also prolong its rapid decline in exerting anti-inflammatory and analgesic activities in vivo.


2018 ◽  
Vol 48 (1) ◽  
pp. 16-29 ◽  
Author(s):  
Richard Frank Tester ◽  
Farage H. Al-Ghazzewi

Purpose This paper aims to focus on the utilisation of pre- and probiotics for oral care and the state of knowledge at this time. Design/methodology/approach Pre- and probiotics describe beneficial carbohydrates and microbiota, respectively, for optimal gut health. Carbohydrates provide energy selectively for the gut-friendly bacteria. The use of both carbohydrates and bacteria is, however, being expanded into other areas of the body – including the skin, vagina and oral cavity – for health-related applications. Findings There is increased interest in both pre- and probiotics for oral care products. The importance of oral microflora and their selective substrates is discussed against a background of contemporary oral care approaches. The issues and benefits are discussed in this review. Originality/value It is clear that consumption of prebiotics and probiotics may play a role as potential prophylactic or therapeutic agents for reducing the presence of organisms in the mouth associated with tooth decay. To confirm a beneficial effect of pre- and probiotics further in vivo studies involving healthy human volunteers should be considered.


Sign in / Sign up

Export Citation Format

Share Document