Exploration of the Biological Potential of Benzoxazoles: An Overview

2019 ◽  
Vol 16 (2) ◽  
pp. 111-126 ◽  
Author(s):  
Mayura Kale ◽  
Vijayalaxmi Chavan

The development of benzoxazole containing drugs and research compounds has been discussed in the present review along with its varied pharmacological activities such as antimicrobial, antiinflammatory, anticancer, antiviral, antiasthmatic, antitubercular, anticonvulsant, lipid modulating, anticoagulants, antidiabetic and anthelmintic activities. The present review is a compilation of the biological activities determined in the research work conducted on benzoxazole-based compounds fused and linked with various other heterocycles.

2021 ◽  
Vol 10 (4) ◽  
pp. 377-392 ◽  
Author(s):  
Iryna Myrko ◽  
Taras Chaban ◽  
Yulia Matiichuk ◽  
Mohammad Arshad ◽  
Vasyl Matiychuk

In this review we systematized the theoretical and experimental data concerning the versatile approaches for the synthesis of N-acylphenothiazines. The aim of the study was to compile the literature reported worldwide in the past 20 years. This article also reviewed the analysis of pharmacological activities of these heterocycles as one of the promising chemotherapeutic objects for the modern bioorganic and medicinal chemistry. It has been hypothesized that the enormous biological potential of these moieties is due to the radical nature in the acyl moiety. Therefore, the present review will be a good contribution to the literature and will provide the platform for the medicinal chemistry researchers to carry out more studies aiming the N-acylphenothiazine moieties as the novel chemotherapeutic agents.


2020 ◽  
Vol 8 ◽  
Author(s):  
Xueyi Wang ◽  
Shangying Ma ◽  
Feifan Lai ◽  
Yiqi Wang ◽  
Chenghua Lou

Eupatorium lindleyanum DC. (EL) has a long history of traditional use in China to cure coughs, chronic bronchitis, lobar pneumonia, and hypertension. Because of this extensive use of EL in traditional medicine, this present review gives a systematic overview of the conventional applications, phytochemistry, and pharmacological effects of the herb. Literature was systematically searched using the scientific databases ScienceDirect, SciFinder, CNKI, Wiley, Baidu Scholar, SpringerLink, PubMed, Web of Science, and other professional websites. Information was also gathered from books on traditional Chinese herbal medicine, the Chinese Pharmacopoeia and Chinese Materia Medica. To date, many preparations of EL have been widely used clinically to treat various diseases of the respiratory system. More than 100 compounds have been isolated from the herb, including triterpenes, sesquiterpenes, sesquiterpene lactones, flavonoids, acyclic diterpenoids, sterols, and so on. Among them, terpenoids are considered to be the most important bioactive substances in EL. The pharmacological functions of EL, including anti-asthmatic, anti-tussive, anti-inflammatory, anti-hyperlipidemic, anti-hypertensive, anti-virus, and anti-tumor activities, have been widely investigated. However, most of the studies are preclinical research. Further studies are required to examine the underlying mechanisms of action. Traditionally, EL is used for treating many diseases, especially respiratory diseases. Unfortunately, up to now, modern studies have not yet well elucidated the conventional usage of EL. Most importantly, its biological activities and the corresponding constituents are still unclear. Moreover, studies on the pharmacokinetics and toxicity of EL are few, so data on the clinical safety of EL are lacking. Taken together, research work on EL is quite preliminary. More in-depth studies of phytochemistry, pharmacological activities, pharmacokinetics, and toxicity of the herb are needed. This review aims to provide valuable information on EL to guide future investigations and applications.


2020 ◽  
Vol 17 (8) ◽  
pp. 661-670
Author(s):  
Mohamed Ahmed Elian Sophy ◽  
Mohamed Ahmed Mahmoud Abdel Reheim

Aim and Objective: According to the literature survey, pyrazole is a unique template that is associated with several biological activities. This article highlighted the research work of many researchers reported in the literature for synthesis and different pharmacological activities of the pyrazole nucleus. In the present work, pyrazol- 3-one 1 was reacted with cyanoacetic acid hydrazide and elemental sulfur to afford the corresponding thieno[3,2-c]pyrazol-6-carbohydrazide 3 derivatives. The latter compound reacted with some electrophilic reagents such as DMF-DMA, triethylorthoformate, arylidenemalononitriles and chalcones under neat conditions to give substituted oxadiazole and pyrazole, respectively. The treatment of compound 3 with active methylene reagents such as acetylacetone, diethylmalonate, ethyl acetoacetate and ethyl cyanoacetate under suitable conditions afforded pyrazole derivatives 10, 11, 13, and 15, respectively. Novel pyrazolothienopyrimidine 27 and 30 were prepared from precursor 26 with carbon disulfide and triethylorthoformate, respectively. The chemical structures of the newly synthesized compounds were established by elemental and spectral analyses including IR, and 1HNMR in addition to 13C-NMR and mass spectra. Materials and Methods: A novel substituted pyrazole, pyrimidine and pyrazolothienopyrimidine were obtained via Gewald synthesis of thiophene and fused thiophene and Mannich reactions of 5-amino-3-phenyl-1Hthieno[ 3,2-c]pyrazole-6-carbohydrazide. Results and Discussion: A series of some newly azoles and azines were prepared via reaction of thieno[3,2- c]pyrazol-6-carbohydrazide derivative 3 as starting material with some electrophilic and nucleophilic reagents. The structures of target compounds were established by elemental analyses and spectral data. Conclusion: Pyrazole is a unique template that is associated with several biological activities. This article highlighted the research work of many researchers reported in the literature for synthesis and different pharmacological activities of the pyrazole nucleus. In the current investigation, we have developed new and efficient methods for the synthesis of thieno[3,2-c]pyrazol-6-carbohydrazide derivatives. In addition, we have explored the preparative potential of these substances as intermediates for the synthesis of substituted pyrazoles and fused pyrazoles 10-30, respectively.


2019 ◽  
Vol 15 (4) ◽  
pp. 369-376
Author(s):  
Kanika Patel ◽  
Vikas Kumar ◽  
Amita Verma ◽  
Mahfoozur Rahman ◽  
Dinesh Kumar Patel

Background: Phytoconstituents of fruits, vegetables, spice and herbs are important for human health. Phytoconstituents play an important role in the growth, development, defensive mechanism, colors, odour and flavors of plants. Psoralea corylifolia Linn (P. corylifolia) commonly known as ‘Bakuchi’ belongs to Leguminosae family widely distributed in China and Southeastern Asian countries. Methods: Various electronic databases such as PubMed, Science Direct, Scopus and Google were searched to collect the data of the present review. Further, all the collected information was categorized into different section as per the aim of the paper. Moreover, analyzed data were also presented in the graphical abstract. Results: Seventy-two research and review papers have been collected and were included in the present review. Nineteen papers contained general information’s of P. corylifolia, Psoralens and psoralidin whereas thirty paper data were presented in the pharmacological activities sections and remaining in the Analytical tools and discussion section. From these databases, we can say that P. corylifolia possesses antibacterial, anti-inflammatory, antifungal, antioxidant, antiflarial, estrogenic, antitumour, and immunomodulatory activities. Psoralens are mainly used in the treatment of psoriasis, vitiligo and dermatitis. Topical or oral psoralens followed by UVA radiation exposure are one of the best treatments of leucoderma. Psoralidin exhibits antioxidant, anti-apoptotic, anti-inflammatory and antitumor activities. Conclusion: This review summarizes an overview of P. corylifolia, psoralen and its derivative psoralidin with respects to their pharmacological activities, medicinal uses, biological activities and bioanalytical aspects. These data will be helpful in the translation of information from traditional to the modern medicine of psoralidin.


2021 ◽  
Vol 14 ◽  
Author(s):  
Dinesh Kumar Patel

Backgrounds: Plants and their derived products have been used in the traditional system of medicine for the treatment of various forms of human disorders since very ancient time. In the traditional system of medicine and modern allopathic medicine, numerous phytoconstituents have been used for the preparation of various types of formulation. Flavonoidal class phytochemicals are the main active phytoconstituents of plants, fruit, vegetables and beverages. Flavonoidal class phytochemicals are more referred as “nutraceuticals” due to their important pharmacological activities in the mammalian body. Methods: In order to understand the health beneficial effects of flavonoidal class chemical, present work summarized the health beneficial aspects of pectolinarin. Present work summarized the medicinal importance, pharmacological activities and analytical aspects of pectolinarin with various experimental models and advance analytical methods. However, all the collected scientific information’s have been analyzed in the present work for their health beneficial potential. Results: From the analysis of all the collected scientific information in the present work it was found that pectolinarin is an important phytochemical found to be present in the numerous medicinal plants but especially found in Cirsium japonicum which is an important medicinal herb of Korea, China and Japan. Pharmacological activities data analysis signified the health beneficial potential of pectolinarin for their anti-rheumatoid arthritis, analgesic, anti-inflammatory, hepatoprotective, anti-diabetic, anti-tumor, anti-dengue, antiviral, neuroprotective and antidepressant activity. However effectiveness of pectolinarin in central nervous system, bone, liver and cancerous disorders have been also reported in the literature. Analysis of present scientific information revealed the health beneficial potential of pectolinarin in the modern medicine due to their numerous pharmacological activities in different part of biological systems. Due to their biological importance in food and human health, a better understanding of their biological activities indicates their potentials as therapeutic agents. Conclusion: Scientific data of the present work signified the biological potential and therapeutic benefit of pectolinarin.


2021 ◽  
Vol 3 (3) ◽  
pp. 3-6
Author(s):  
Bhushan D Varpe ◽  
Gajanan Gavande ◽  
Amol Lavate ◽  
Vaibhav Dhakane ◽  
Dnyaneshwar Jagtap ◽  
...  

Quinoline and derivatives of Benzimidazole are widely studied for their different activities. One of the essential classes of anti-malarial and anti-bacterial treatment is the quinoline derivatives. Quinoline and Benzimidazole are flexible lead molecules used to model the future molecules of drugs. The present review outlines the potential pharmacological activities of quinoline and Benzimidazole derivatives.


Author(s):  
Pullagura M. Krishna Prasad ◽  
Avdhut Kanvinde S. ◽  
Raja S.

<p>Benzimidazole nucleus is one of the most important heterocycles exhibiting remarkable pharmacological activities. Numerous method for the synthesis of benzimidazole and also their diverse reactions offer enormous scope in the field of medicinal chemistry. Various reported biological activities (analgesic, anti-inflammatory, anthelmintic, anticancer, anthelmintic, antioxidant, antitubercular, and antiviral activity) of bezimidazole are collected and summarized here. Large numbers of drugs are available to treat various diseases, but they are associated with some drawbacks like resistance, toxicities and other adverse effects. To combat with these problems there is need to discover and synthesize newer chemical entities with better efficacy and novel mechanism of action. The benzimidazole ring is an important pharmacophore in modern drug discovery. The synthesis of novel benzimidazole derivatives remains a main focus of medicinal research. There is still scope for more research work to be done in this field to find a novel agent. The versatility of new generation benzimidazole would represent a fruitful pharmacophore for further development of better medicinal agents. Therefore this substrate has a tremendous scope for the discovery of new, better, safe and more potent biological agents.</p>


Author(s):  
Bharat Goel ◽  
Nancy Tripathi ◽  
Nivedita Bhardwaj ◽  
Bharat Sahu ◽  
Shreyans K. Jain

Abstract:: Genus Pongamia and Derris belong to the Leguminosae family and are reported synonymously in literature. Although many compounds have been isolated from different plant parts but seed oil is known to produce non-edible medicinally important furanoflavonoids. The seed oil, commonly known as Karanj oil in Ayurvedic and Siddha traditional systems of medicine, is reported for the treatment of various skin infections and psoriasis. Several phytopharmacological investigations have proved the medicinal potential of furanoflavonoids in skin and other disorders. Not only furanoflavonoids but several other important phenolic constituents such as chalcones, dibenzoylmethanes, aurones, isoflavones, flavanone dihydroflavonol, flavans, pterocarpans, rotenoids, coumarins, coumestans, stilbenoids and peltygynoids and their glycosides have been reported for different biological activities including antihyperglycemic, anti-inflammatory, anticancer, insecticidal, anti-alzheimer’s, gastroprotective, antifungal, antibacterial, etc. In the present review, the phytochemistry and pharmacological activities of the genera Pongamia and Derris have been summarized.


2021 ◽  
Vol 11 (12) ◽  
pp. 5742
Author(s):  
Ali Irfan ◽  
Sami Ullah ◽  
Ayesha Anum ◽  
Nazish Jabeen ◽  
Ameer Fawad Zahoor ◽  
...  

The 1,2,3-thiadiazole moiety occupies a significant and prominent position among privileged heterocyclic templates in the field of medicine, pharmacology and pharmaceutics due to its broad spectrum of biological activities. The 1,2,3-thiadiazole hybrid structures showed myriad biomedical activities such as antifungal, antiviral, insecticidal, antiamoebic, anticancer and plant activators, etc. In the present review, various synthetic transformations and approaches are highlighted to furnish 1,2,3-thiadiazole scaffolds along with different pharmaceutical and pharmacological activities by virtue of the presence of the 1,2,3-thiadiazole framework on the basis of structure–activity relationship (SAR). The discussion in this review article will attract the attention of synthetic and medicinal researchers to explore 1,2,3-thiadiazole structural motifs for future therapeutic agents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dinesh Kumar Patel

Background: Medicinal plants have been used in medicine for the treatment of numerous diseases due to their medicinal properties and pharmacological activities. Popularity of herbal based drugs in the health sector has been increasing due to patient compliance and cost effectiveness. Herbal drugs derived from plant and animal source have been used in the Ayurvedic, Homeopathic, and Naturopathic system of medicine. Medicinal plants have been used as fuel, clothing, shelter and food material in worldwide since very early age. Phytoconstituents are pure plant chemicals found in different parts of the plant material. Flavonoids are important class of phytochemical found in medicinal plants and their derived products. Methods: In order to know the biological importance of tricetin, in the present investigation scientific data of tricetin in respect to their medicinal importance and pharmacological activities were collected and analyzed. Literature database such as Google, PubMed, Science Direct and Scopus has been searched using term tricetin and flavonoid. All the scientific information has been collected from these databases to know the biological importance of tricetin. Analytical data of tricetin have been also collected and analyzed in the present work to know the isolation, separation and identification procedure of trice Results: Scientific data analysis of different research work revealed the presence of tricetin in Triticum dicoccum, Lathyrus pratensis, Eucalyptus globules, Thuja occidentalis and Metasequoia glyptostroboides. Scientific data analysis signified biological importance of tricetin against different form of cancerous disorders, human osteosarcoma, glioblastoma multiforme, human breast adenocarcinoma, human non‑small cell lung cancer and liver cancer. Scientific data analysis also signified biological potential of tricetin against inflammation, neurodegenerative diseases, atherosclerosis, diabetes and respiratory syncytial virus infection. Scientific data analysis revealed the biological importance of tricetin against multidrug resistance and free radicals. Conclusions: Scientific data analysis revealed biological importance and pharmacological activities of tricetin against various form of human disorders including cancer, inflammation, neurodegeneration, atherosclerosis and diabetes.


Sign in / Sign up

Export Citation Format

Share Document