Molecular Docking and Dynamics Simulation Analysis of Thymoquinone and Thymol Compounds from Nigella sativa L. that Inhibit Cag A and Vac A Oncoprotein of Helicobacter pylori: Probable Treatment of H. pylori Infections

2020 ◽  
Vol 17 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Heena Tabassum ◽  
Iffat Zareen Ahmad

Background: Helicobacter pylori infection is accountable for most of the peptic ulcer and intestinal cancers. Due to the uprising resistance towards H. pylori infection through the present and common proton pump inhibitors regimens, the investigation of novel candidates is the inevitable issue. Medicinal plants have always been a source of lead compounds for drug discovery. The research of the related effective enzymes linked with this gram-negative bacterium is critical for the discovery of novel drug targets. Objective: The aim of the study is to identify the best candidate to evaluate the inhibitory effect of thymoquinone and thymol against H. pylori oncoproteins, Cag A and Vac A in comparison to the standard drug, metronidazole by using a computational approach. Materials and Methods: The targeted oncoproteins, Cag A and Vac A were retrieved from RCSB PDB. Lipinski’s rule and ADMET toxicity profiling were carried out on the phytoconstituents of the N. sativa. The two compounds of N. sativa were further analyzed by molecular docking and MD simulation studies. The reported phytoconstituents, thymoquinone and thymol present in N. sativa were docked with H. pylori Cag A and Vac A oncoproteins. Structures of ligands were prepared using ChemDraw Ultra 10 software and then changed into their 3D PDB structures using Molinspiration followed by energy minimization by using software Discovery Studio client 2.5. Results: The docking results revealed the promising inhibitory potential of thymoquinone against Cag A and Vac A with docking energy of -5.81 kcal/mole and -3.61kcal/mole, respectively. On the contrary, the inhibitory potential of thymol against Cag A and Vac A in terms of docking energy was -5.37 kcal/mole and -3.94kcal/mole as compared to the standard drug, metronidazole having docking energy of -4.87 kcal/mole and -3.20 kcal/mole, respectively. Further, molecular dynamic simulations were conducted for 5ns for optimization, flexibility prediction, and determination of folded Cag A and Vac A oncoproteins stability. The Cag A and Vac A oncoproteins-TQ complexes were found to be quite stable with the root mean square deviation value of 0.2nm. Conclusion: The computational approaches suggested that thymoquinone and thymol may play an effective pharmacological role to treat H. pylori infection. Hence, it could be summarized that the ligands thymoquinone and thymol bound and interacted well with the proteins Cag A and Vac A as compared to the ligand MTZ. Our study showed that all lead compounds had good interaction with Cag A and Vac A proteins and suggested them to be a useful target to inhibit H. pylori infection.

2019 ◽  
Vol 15 (2) ◽  
pp. 186-195 ◽  
Author(s):  
Samridhi Thakral ◽  
Vikramjeet Singh

Background: Postprandial hyperglycemia can be reduced by inhibiting major carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase which is an effective approach in both preventing and treating diabetes. Objective: The aim of this study was to synthesize a series of 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl] benzoic acid derivatives and evaluate α-glucosidase and α-amylase inhibitory activity along with molecular docking and in silico ADMET property analysis. Method: Chlorosulfonation of 2,4-dichloro benzoic acid followed by reaction with corresponding anilines/amines yielded 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic acid derivatives. For evaluating their antidiabetic potential α-glucosidase and α-amylase inhibitory assays were carried out. In silico molecular docking studies of these compounds were performed with respect to these enzymes and a computational study was also carried out to predict the drug-likeness and ADMET properties of the title compounds. Results: Compound 3c (2,4-dichloro-5-[(2-nitrophenyl)sulfamoyl]benzoic acid) was found to be highly active having 3 fold inhibitory potential against α-amylase and 5 times inhibitory activity against α-glucosidase in comparison to standard drug acarbose. Conclusion: Most of the synthesized compounds were highly potent or equipotent to standard drug acarbose for inhibitory potential against α-glucosidase and α-amylase enzyme and hence this may indicate their antidiabetic activity. The docking study revealed that these compounds interact with active site of enzyme through hydrogen bonding and different pi interactions.


Author(s):  
Abdulaziz Bin Dukhyil

Aims: Diabetes mellitus (DM) is chronic disorder well known for increased glucose level in blood. This disease can be controlled by inhibiting the enzyme (e.g., α-amylase) involve in carbohydrate hydrolysis. Senna auriculata leaves methanolic extract (SALME) have potential antidiabetic properties and it was also found to be safe in preclinical studies. In this study the aim was to explore the molecular interactions of α-amylase and bioactive compounds in SALME and their physicochemical properties. Methodology: Computational approach such as molecular docking and physicochemical analysis prediction was applied to understand the antidiabetic potential of natural compounds present in SALME. Results: The results showed from physicochemical analysis that out of 11 only 7 compounds are having drug like properties which are orally and intestinally better bioavailable. Furthermore, molecular docking analysis explained that three compounds (C3, C4, and C7) have lower binding energy, ΔG (-8, -9.1, -9.5 kcal/mol) and better binding affinity, Ki (7.31 x 105, 4.68 x 106, and 9.2 x 106 M-1, respectively) than the acarbose ΔG (-7.8 kcal/mol) and Ki (6.18 x 105 M-1), a well-known FDA approved medication for DM. The study also explained the binding pattern that the catalytic residue such as Asp197, Glu233 and Asp300 are involved in stabilizing the natural compounds with in the catalytic active site of target enzyme. Conclusions: From the results it has been concluded that these three compounds found in SALME have better inhibitory potential for α-amylase in comparison with acarbose. Further validation of the findings is required through molecular dynamics simulation, ADME-T study, and in-vitro enzyme inhibition by the purified compounds.


Author(s):  
Josephine Anthony ◽  
Vijaya Raghavan Rangamaran ◽  
Kumar T. Shivasankarasubbiah ◽  
Dharani Gopal ◽  
Kirubagaran Ramalingam

Computational tools have extended their reach into different realms of scientific research. Often coupled with molecular dynamics simulation, docking provides comprehensive insight into molecular mechanisms of biological processes. Influence of molecular docking is highly experienced in the field of structure based drug discovery, wherein docking is vital in validating novel lead compounds. The significance of molecular docking is also understood in several environmental and industrial research, in order to untangle the interactions among macromolecules of non-medical interest. Various processes such as bioremediation (REMEDIDOCK), nanomaterial interactions (NANODOCK), nutraceutical interactions (NUTRADOCK), fatty acid biosynthesis (FADOCK), and antifoulers interactions (FOULDOCK) find the application of molecular docking. This chapter emphasizes the involvement of computational techniques in the aforementioned fields to expand our knowledge on macromolecular interacting mechanisms.


Author(s):  
Prem Prakash Kushwaha ◽  
Atul Kumar Singh ◽  
Tanya Bansal ◽  
Akansha Yadav ◽  
Kumari Sunita Prajapati ◽  
...  

The present study explores the SARS-CoV-2 drugable target inhibition efficacy of phytochemicals from Indian medicinal plants using molecular docking, molecular dynamics (MD) simulation, and MM-PBSA analysis. A total of 130 phytochemicals were screened against SARS-CoV-2 Spike (S)-protein, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). Result of molecular docking showed that Isoquercetin potentially binds with the active site/protein binding site of the Spike, RdRP, and Mpro targets with a docking score of -8.22, -6.86, and -9.73 kcal/mole, respectively. Further, MS 3, 7-Hydroxyaloin B, 10-Hydroxyaloin A, showed -9.57, -7.07, -8.57 kcal/mole docking score against Spike, RdRP, and Mpro targets respectively. The MD simulation was performed to study the favorable confirmation and energetically stable complex formation ability of Isoquercetin and 10-Hydroxyaloin A phytochemicals in Mpro-unbound/ligand bound/standard inhibitor bound system. The parameters such as RMSD, RMSF, Rg, SASA, Hydrogen-bond formation, energy landscape, principal component analysis showed that the lead phytochemicals form stable and energetically stabilized complex with the target protein. Further, MM-PBSA analysis was performed to compare the Gibbs free energy of the Mpro-ligand bound and standard inhibitor bound complexes. The analysis revealed that the His-41, Cys145, Met49, and Leu27 amino acid residues were majorly responsible for the lower free energy of the complex. Drug likeness and physiochemical properties of the test compounds showed satisfactory results. Taken together, the study concludes that that the Isoquercetin and 10-Hydroxyaloin A phytochemical possess significant efficacy to bind SARS-Cov-2 Mpro active site. The study necessitates further in vitro and in vivo experimental validation of these lead phytochemicals to assess their anti-SARS-CoV-2 potential.


Author(s):  
Muhammad Taha ◽  
Fazal Rahim ◽  
Shawkat Hayat ◽  
Manikandan Selvaraj ◽  
Rai Khalid Farooq ◽  
...  

In the search of potent α-amylase inhibitors, we have synthesized seventeen derivatives of 2-mercaptobenzimidazole bearing sulfonamide (1-17) and evaluated for their α-amylase inhibitory potential. All compounds display a variable degree of α-amylase activity having IC50 values ranging between 0.90 ± 0.05 to 11.20 ± 0.30 µM when compared with the standard drug acarbose having IC50 value 1.70 ± 0.10 µM. Compound 1, 2, 11, 12 and 14 having IC50 values 1.40 ± 0.10, 1.30 ± 0.05, 0.90 ± 0.05, 1.60 ± 0.05 and 1.60 ± 0.10 µM respectively were found many folds better than the standard drug acarbose. The remaining analogs showed good inhibitory potentials. All the synthesized compounds were characterized by HREI-MS, 1H and 13C-NMR. Structure activity relationship (SAR) has been recognized for all newly synthesized analogs. Through molecular docking study, binding mode of active analogs with α-amylase enzyme was confirmed.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xue Shen ◽  
Weijia Zhang ◽  
Chang Peng ◽  
Jiahui Yan ◽  
Pengting Chen ◽  
...  

Abstract Background Helicobacter pylori (H. pylori) infection has become an international public health problem, and antibiotic-based triple or quadruple therapy is currently the mainstay of treatment. However, the effectiveness of these therapies decreases due to resistance to multiple commonly used antibiotics. Sanguisorba officinalis L. (S. officinalis), a traditional Chinese medicine clinically used for hemostasis and treatment of diarrhea, has various pharmacological activities. In this study, in vitro antimicrobial activity was used for the preliminary evaluation of S. officinalis against H. pylori. And a pharmacology analysis approach was also utilized to elucidate its underlying mechanisms against H. pylori infection. Methods Micro-broth dilution method, agar dilution method, checkerboard assay, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used for the assessment of anti-bacterial activity. Active ingredients screening, GO analysis, KEGG analysis, construction of PPI network, molecular docking, and RT-qPCR were used to elucidate the underlying pharmacological mechanisms of S. officinalis against H. pylori infection. Results The minimum inhibitory concentration (MIC) values of S. officinalis against multiple H. pylori strains including clinically isolated multi-drug resistant (MDR) strains were ranging from 160 to 320 µg/ml. These results showed that S. officinalis had additive interaction with four commonly used antibiotics and could exert antibacterial effect by changing the morphology of bacteria without developing drug resistance. Through network pharmacology analysis, 8 active ingredients in S. officinalis were screened out for subsequent studies. Among 222 putative targets of S. officinalis, 49 targets were identified as potential targets for treatment of H. pylori infection. And these 49 targets were significantly enriched in GO processes such as protein kinase B signaling, protein kinase activity, protein kinase binding, and KEGG pathways such as Pathways in cancer, MicroRNAs in cancer, and TNF signaling pathway. Protein-protein interaction analysis yielded 5 core targets (AKT1, VEGFA, EGFR, SRC, CCND1), which were validated by molecular docking and RT-qPCR. Conclusions Overall, this study confirmed the in vitro inhibitory activity of S. officinalis against H. pylori and explored the possible pharmacological mechanisms, laying the foundation for further research and clinical application.


Author(s):  
Oluwatoba Emmanuel Oyeneyin ◽  
Babatunde Samuel Obadawo ◽  
Adesoji Alani Olanrewaju ◽  
Taoreed Olakunle Owolabi ◽  
Fahidat Adedamola Gbadamosi ◽  
...  

Abstract Background The number of cancer-related deaths is on the increase, combating this deadly disease has proved difficult owing to resistance and some serious side effects associated with drugs used to combat it. Therefore, scientists continue to probe into the mechanism of action of cancer cells and designing novel drugs that could combat this disease more safely and effectively. Here, we developed a genetic function approximation model to predict the bioactivity of some 2-alkoxyecarbonyl esters and probed into the mode of interaction of these molecules with an epidermal growth factor receptor (3POZ) using the three-dimensional quantitative structure activity relationship (QSAR), extreme learning machine (ELM), and molecular docking techniques. Results The developed QSAR model with predicted (R2pred) of 0.756 showed that the model was fit to be validated parameter for a built model and also proved that the developed model could be used in practical situation, R2 for training set (0.9929) and test set (0.8397) confirmed that the model could successfully predict the activity of new compounds due to its correlation with the experimental activity, the models generated with ELM models showed improved prediction of the activity of the molecules. The lead compounds (22 and 23) had binding energies of −6.327 and −7.232 kcalmol−1 for 22 and 23 respectively and displayed better inhibition at the binding sites of 3POZ when compared with that of the standard drug, chlorambucil (−6.0 kcalmol−1). This could be attributed to the presence of double bonds and the α-ester groups. Conclusion The QSAR and ELM models had good prognostic ability and could be used to predict the bioactivity of novel anti-proliferative drugs.


2011 ◽  
Vol 10 (3) ◽  
pp. 254 ◽  
Author(s):  
Joel Antonio Barbosa ◽  
Maria Isabel Schinonni

Objetivo: Realizar uma revisão bibliográfica sobre a ação da bactéria Helicobacter pylori nas alterações gastrointestinais visando a  entender o papel dos chamados “fatores de virulência”,  assim como estudar a associação do H. pylori com doenças gastrointestinais e os mecanismos imunológicos desencadeados pela presença desta bactéria. Método: Foram selecionados os trabalhos publicados em revistas indexadas nas bases de dados MedLine e PubMed, sob os unitermos “H. pylori”, “gastrite”, “câncer”, “resposta imune”, “Cag A” e “VacA” com maior ênfase nos artigos publicados nos últimos 5 anos. Resultado: Trinta e dois artigos foram selecionados, todos de revistas estrangeiras, sendo um dos trabalhos desenvolvido por grupo de cientistas brasileiros. Os artigos selecionados mostraram o amplo espectro de ação da H. pylori através de seus “fatores de virulência” tais como a vacuolização de células infectadas provocada pela proteína VacA e a adesão da bactéria às células através da atividade das adesinas e proteínas de membrana. Também foram descritas as interações da H. pylori com doenças gastrointestinais e com o sistema endócrino assim como as peculiaridades da resposta imunológica humoral e celular contra esta bactéria. Conclusões: Fica clara a importância epidemiológica da H. pylori por sua evidente associação com o câncer gástrico e o importante papel desempenhado pelos fatores de virulência codificados pela bactéria.


2021 ◽  
Author(s):  
Sheng Zhong ◽  
Zhen Guo ◽  
Gaojing Dou ◽  
Xiaye Lv ◽  
Xinhui Wang ◽  
...  

Abstract Objective To screen ideal lead compounds with potential inhibition of 3-phosphoinositi-dependent protein kinase 1 (PDK1) from ZINC15 database, which is beneficial to drug design and improvement.Methods The Discovery Studio 4.5 computer-aided virtual screening technique was used to screen potential inhibitors of PDK1. Libdock was used for virtual screening and scoring of candidate compounds, ADME module was used for physical and chemical properties and toxicity analysis, and CDOCKER module was used for molecular docking analysis. The binding affinity of ligand-PDK1 was studied through molecular docking, and the stability of ligand-PDK1 in the natural environment was analyzed through molecular dynamics simulation.Results Two natural compounds ZINC00000157721 and ZINC000034189841 were screened from ZINC15 database. These two compounds have no CYP2D6 inhibition, easy to pass the blood-brain barrier, no hepatotoxicity, high binding affinity with PDK1, higher stability in the natural environment than positive drug BX-795, and stable existence.Conclusions The results show that ZINC00000157721 and ZINC000034189841 are ideal and safe lead compounds and have a potential inhibitory effect on PDK1. These compounds are safe candidates and may provide the basis and premise for the design and optimization of specific PDK1 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document