Ovine COX-1 isoenzyme bio-production

2021 ◽  
Vol 17 ◽  
Author(s):  
Morena Miciaccia ◽  
Mariaclara Iaselli ◽  
Savina Ferorelli ◽  
Paola Loguercio Polosa ◽  
Maria Grazia Perrone ◽  
...  

Background: Recent findings enlightened the pivotal role of cyclooxygenases-1 and -2 (COX-1 and COX-2) in human diseases with inflammation as the committed earliest stage, such as cancer and neurodegenerative diseases. COXs are the main targets of nonsteroidal anti-inflammatory drugs and catalyze the bis-oxygenation of arachidonic acid into prostaglandin PGH2, then converted into prostaglandins, thromboxane, and prostacyclin by tissue-specific isomerases. A remarkable amount of pure COX-1 results is necessary to investigate COX-1 structure and function, as well as for in vitro disease biochemical pathway investigations. Methods: Spodoptera frugiperda cells were infected with Baculovirus that revealed to be an efficient expression system to obtain a high amount of ovine COX-1. Protein solubilization time in the presence of a non-ionic detergent was modified, and a second purification step was introduced. Results and Discussion: An improvement of a previously reported method for pure recombinant oCOX-1 production and isolation has been achieved, leading to a lower starting volume of infected cells for each purification, an increased cell density, and of the number of viral particles per cell, and a shortened infection period. The protocol for the recombinant oCOX-1 expression and purification has been in-depth elaborated to obtain 1 mg/L of protein. Conclusion: The optimized procedure could be suitable for producing other membrane proteins as well, for which an improvement in the solubilization step is necessary to have the availability of high concentration proteins.

2000 ◽  
Vol 74 (16) ◽  
pp. 7548-7553 ◽  
Author(s):  
Armin Weidmann ◽  
Christian Fischer ◽  
Shinji Ohgimoto ◽  
Claudia Rüth ◽  
Volker ter Meulen ◽  
...  

ABSTRACT Expression of the measles virus (MV) F/H complex on the surface of viral particles, infected cells, or cells transfected to express these proteins (presenter cells [PC]) is necessary and sufficient to induce proliferative arrest in both human and rodent lymphoid cells (responder cells [RC]). This inhibition was found to occur independent of apoptosis and soluble mediators excluded by a pore size filter of 200 nm released from either PC or RC. We now show that reactive oxygen intermediates which might be released by RC or PC also do not contribute to MV-induced immunosuppression in vitro. Using an inhibitor of Golgi-resident mannosidases (deoxymannojirimycin), we found that complex glycosylation of the F and H proteins is not required for the induction of proliferative arrest of RC. As revealed by our previous studies, proteolytic cleavage of the MV F protein precursor into its F1 and F2 subunits, but not of F/H-mediated cellular fusion, was found to be required, since fusion-inhibitory peptides such as Z-d-Phe-l-Phe-Gly (Z-fFG) did not interfere with the induction of proliferative inhibition. We now show that Z-fFG inhibits cellular fusion at the stage of hemifusion by preventing lipid mixing of the outer membrane layer. These results provide strong evidence for a receptor-mediated signal elicited by the MV F/H complex which can be uncoupled from its fusogenic activity is required for the induction of proliferative arrest of human lymphocytes.


2019 ◽  
Vol 7 (10) ◽  
pp. 396 ◽  
Author(s):  
Selvaraj Pavulraj ◽  
Kathrin Eschke ◽  
Adriane Prahl ◽  
Michael Flügger ◽  
Jakob Trimpert ◽  
...  

Elephant endotheliotropic herpesvirus (EEHV) can cause a devastating haemorrhagic disease in young Asian elephants worldwide. Here, we report the death of two young Asian elephants after suffering from acute haemorrhagic disease due to EEHV-1A infection. We detected widespread distribution of EEHV-1A in various organs and tissues of the infected elephants. Enveloped viral particles accumulated within and around cytoplasmic electron-dense bodies in hepatic endothelial cells were detected. Attempts to isolate the virus on different cell cultures showed limited virus replication; however, late viral protein expression was detected in infected cells. We further showed that glycoprotein B (gB) of EEHV-1A possesses a conserved cleavage site Arg-X-Lys/Arg-Arg that is targeted by the cellular protease furin, similar to other members of the Herpesviridae. We have determined the complete 180 kb genome sequence of EEHV-1A isolated from the liver by next-generation sequencing and de novo assembly. As virus isolation in vitro has been unsuccessful and limited information is available regarding the function of viral proteins, we have attempted to take the initial steps in the development of suitable cell culture system and virus characterization. In addition, the complete genome sequence of an EEHV-1A in Europe will facilitate future studies on the epidemiology and diagnosis of EEHV infection in elephants.


2006 ◽  
Vol 80 (22) ◽  
pp. 11074-11081 ◽  
Author(s):  
Pablo Gastaminza ◽  
Sharookh B. Kapadia ◽  
Francis V. Chisari

ABSTRACT The recent development of a cell culture infection model for hepatitis C virus (HCV) permits the production of infectious particles in vitro. In this report, we demonstrate that infectious particles are present both within the infected cells and in the supernatant. Kinetic analysis indicates that intracellular particles constitute precursors of the secreted infectious virus. Ultracentrifugation analyses indicate that intracellular infectious viral particles are similar in size (∼65 to 70 nm) but different in buoyant density (∼1.15 to 1.20 g/ml) from extracellular particles (∼1.03 to 1.16 g/ml). These results indicate that infectious HCV particles are assembled intracellularly and that their biochemical composition is altered during viral egress.


2008 ◽  
Vol 83 (1) ◽  
pp. 228-240 ◽  
Author(s):  
Barbara Berarducci ◽  
Jaya Rajamani ◽  
Mike Reichelt ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
...  

ABSTRACT Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-ΔCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.


1998 ◽  
Vol 72 (2) ◽  
pp. 1235-1243 ◽  
Author(s):  
Christopher M. Sanderson ◽  
Michael Way ◽  
Geoffrey L. Smith

ABSTRACT Many viruses induce profound changes in cell metabolism and function. Here we show that vaccinia virus induces two distinct forms of cell movement. Virus-induced cell migration was demonstrated by an in vitro wound healing assay in which infected cells migrated independently into the wound area while uninfected cells remained relatively static. Time-lapse microscopy showed that the maximal rate of migration occurred between 9 and 12 h postinfection. Virus-induced cell migration was inhibited by preinactivation of viral particles with trioxsalen and UV light or by the addition of cycloheximide but not by addition of cytosine arabinoside or rifampin. The expression of early viral genes is therefore necessary and sufficient to induce cell migration. Following migration, infected cells developed projections up to 160 μm in length which had growth-cone-like structures and were frequently branched. Time-lapse video microscopy showed that these projections were formed by extension and condensation of lamellipodia from the cell body. Formation of extensions was dependent on late gene expression but not the production of intracellular enveloped (IEV) particles. The requirements for virus-induced cell migration and for the formation of extensions therefore differ from each other and are distinct from the polymerization of actin tails on IEV particles. These data show that poxviruses encode genes which control different aspects of cell motility and thus represent a useful model system to study and dissect cell movement.


2008 ◽  
Vol 89 (4) ◽  
pp. 866-877 ◽  
Author(s):  
Paul Young ◽  
Emma Anderton ◽  
Kostas Paschos ◽  
Rob White ◽  
Martin J. Allday

Viral nuclear oncoproteins EBNA3A and EBNA3C are essential for the efficient immortalization of B cells by Epstein–Barr virus (EBV) in vitro and it is assumed that they play an essential role in viral persistence in the human host. In order to identify cellular genes regulated by EBNA3A expression, cDNA encoding EBNA3A was incorporated into a recombinant adenoviral vector. Microarray analysis of human diploid fibroblasts infected with either adenovirus EBNA3A or an empty control adenovirus consistently showed an EBNA3A-specific induction of mRNA corresponding to the chaperones Hsp70 and Hsp70B/B′ and co-chaperones Bag3 and DNAJA1/Hsp40. Analysis of infected fibroblasts by real-time quantitative RT-PCR and Western blotting confirmed that EBNA3A, but not EBNA3C, induced expression of Hsp70, Hsp70B/B′, Bag3 and DNAJA1/Hsp40. This was also confirmed in a stable, inducible expression system. EBNA3A activated transcription from the Hsp70B promoter, but not multimerized heat-shock elements in transient transfection assays, consistent with specific chaperone and co-chaperone upregulation. Co-immunoprecipitation experiments suggest that EBNA3A can form a complex with the chaperone/co-chaperone proteins in both adenovirus-infected cells and EBV-immortalized lymphoblastoid cell lines. Consistent with this, induction of EBNA3A resulted in redistribution of Hsp70 from the cytoplasm to the nucleus. EBNA3A therefore specifically induces (and then interacts with) all of the factors necessary for an active Hsp70 chaperone complex.


2021 ◽  
Vol 7 (2) ◽  
pp. 95-98
Author(s):  
Zakia Jahan ◽  
Masudul Hassan

The Coronavirus disease 2019 (COVID-19) outbreak, forcing us to face unprecedented moments in the world. The huge devastating impact of the world due to the covid-19 attack causes the brink of no return. However, there is no proven and specific treatment for Covid -19. Very few medications have received Emergency Use of Authorization. A recent in vitro study was the first time to find out and to assess the antiviral effect of Ivermectin on COVID-19. The study showed that Ivermectin was active against COVID- 19-infected cells, was able to kill effectively almost all viral particles within 48 h. In these moments of crisis, FDA-approved ivermectin is a ray of hope. Bangladesh Journal of Infectious Diseases 2020;7(2):95-98


The DNA that encodes antibodies can be manipulated in vitro and reintroduced into lymphoid cell lines. In this way, lymphocyte transfectants can be established which secrete milligram quantities of novel antibody molecules. Here we present data concerning the DNA sequences that are needed for efficient expression of the transfected antibody gene and give examples of the way in which this expression system for immunoglobulin gene DNA can be used for the production of useful antibody-related molecules.


2020 ◽  
Vol 18 ◽  
pp. 228080002096347
Author(s):  
Tianshu Lan ◽  
Jingyi Guo ◽  
Xiaoming Bai ◽  
Zengjiong Huang ◽  
Zhimin Wei ◽  
...  

Objective: A potential solution for islet transplantation and drug discovery vis-à-vis treating diabetes is the production of functional islets in a three-dimensional extracellular matrix. Although several scaffold materials have been reported as viable candidates, a clinically applicable one that is injectable and can maintain long-term functionality and survival of islet pancreatic beta-cells (β-cells) is far from being established. Results: In the current study, we evaluated a ready-to-use and injectable hydrogel’s impact on β-cells’ function and viability, both in vitro and in vivo. We found that β-cells in high concentration with hydrogels functionalized via Arg-Gly-Asp (RGD) demonstrated better viability and insulin secretory capacity in vitro. Moreover, it is a biocompatible hydrogel that can maintain β-cell proliferation and vascularization without stimulating inflammation after subcutaneous injection. Meanwhile, modifying the hydrogel with RGD can maintain β-cells’ secretion of insulin, regulating the blood glucose levels of mice with streptozotocin-induced diabetes. Conclusions: Thus, these preliminary results indicate that this RGD-modified hydrogel is a potential extracellular matrix for islet transplantation at extrahepatic sites, and they also provide a reference for future tissue engineering study.


1994 ◽  
Vol 193 (1) ◽  
pp. 307-319 ◽  
Author(s):  
J Chung ◽  
G Goldsworthy ◽  
G Coast

Achetakinin-like immunoreactive material in tissues and haemolymph of adult male crickets was quantified by radioimmunoassay. Achetakinin-like material was found in the brain, suboesophageal ganglia and the thoracic and abdominal ganglia, but the largest amount was within the retrocerebral complex. A Ca2+-dependent release of achetakinin-like immunoreactive material was demonstrated from retrocerebral complexes incubated in vitro in saline containing a high concentration of K+. The concentration of achetakinin-like material in haemolymph from fed crickets was estimated to be 2.8 nmol l-1 and increased more than 10-fold in insects starved for 48 h without access to water. The presence of achetakinin-like material in haemolymph suggests that these peptides are released in vivo and function as circulating neurohormones.


Sign in / Sign up

Export Citation Format

Share Document