Molecularly Imprinted Electrochemical Sensors: Analytical and Pharmaceutical Applications Based on Ortho-Phenylenediamine Polymerization

2020 ◽  
Vol 16 (4) ◽  
pp. 350-366 ◽  
Author(s):  
Burcin Bozal-Palabiyik ◽  
Cem Erkmen ◽  
Bengi Uslu

Background: The molecular imprinting technique has been applied in many fields including separation, artificial antibody mimics, catalysis, sensing studies, and drug delivery. The reasons for the popularity of this technique among the researchers are high selectivity due to the cavities that are formed on the polymer surface for the specific analyte, high robustness, high durability under extreme conditions and low cost. When these advantages are combined with the advantages of electrochemical methods such as rapid response time, ease of use, cheapness and miniaturizability, Molecularly Imprinted Polymer (MIP) based electrochemical sensors turn out to be a widely-preferred sensing tool. Objective: This article provides the reader with information on MIP-based electrochemical sensors and reviews the applications of the MIP sensors prepared by electropolymerization of orthophenylenediamine, a monomer whose mechanical and chemical stability is very high. Results and Conclusion: The literature survey summarized in this review shows that cyclic voltammetry is the most widely preferred electrochemical technique for electropolymerization of o-PD. The media chosen is generally acetate or phosphate buffers with different pH values. Although there are numerous solvents used for template removal, generally methanol and NaOH have been chosen.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4607
Author(s):  
Dounia Elfadil ◽  
Abderrahman Lamaoui ◽  
Flavio Della Pelle ◽  
Aziz Amine ◽  
Dario Compagnone

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4214
Author(s):  
Christopher Zuidema ◽  
Cooper S. Schumacher ◽  
Elena Austin ◽  
Graeme Carvlin ◽  
Timothy V. Larson ◽  
...  

We designed and built a network of monitors for ambient air pollution equipped with low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment within a large epidemiological study. This paper describes the development of a series of hourly and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)—which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences, including the homes of epidemiological study participants, with the goal of improving long-term pollutant exposure predictions at participant locations. Calibration models improved when accounting for individual sensor performance, ambient temperature and humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final daily models for CO and NO performed the best considering agreement with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance add confidence that low-cost sensor measurements collected at the homes of epidemiological study participants can be integrated into spatiotemporal models of pollutant concentrations, improving exposure assessment for epidemiological inference.


RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7732-7737
Author(s):  
Fenying Wang ◽  
Dan Wang ◽  
Tingting Wang ◽  
Yu Jin ◽  
Baoping Ling ◽  
...  

Fluorescent molecularly imprinted polymer (FMIP) gains great attention in many fields due to their low cost, good biocompatibility and low toxicity. Here, a high-performance FMIP was prepared based on the autocatalytic silica sol–gel reaction.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 149
Author(s):  
André Olean-Oliveira ◽  
Gilberto A. Oliveira Brito ◽  
Celso Xavier Cardoso ◽  
Marcos F. S. Teixeira

The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.


2020 ◽  
Vol 34 (03) ◽  
pp. 145-151
Author(s):  
Shimpei Ono ◽  
Hiroyuki Ohi ◽  
Rei Ogawa

AbstractSince propeller flaps are elevated as island flaps and most often nourished by a single perforator nearby the defect, it is challenging to change the flap design intraoperatively when a reliable perforator cannot be found where expected to exist. Thus, accurate preoperative mapping of perforators is essential in the safe planning of propeller flaps. Various methods have been reported so far: (1) handheld acoustic Doppler sonography (ADS), (2) color duplex sonography (CDS), (3) perforator computed tomographic angiography (P-CTA), and (4) magnetic resonance angiography (MRA). To facilitate the preoperative perforator assessment, P-CTA is currently considered as the gold standard imaging tool in revealing the three-dimensional anatomical details of perforators precisely. Nevertheless, ADS remains the most widely used tool due to its low cost, faster learning, and ease of use despite an undesirable number of false-positive results. CDS can provide hemodynamic characteristics of the perforator and is a valid and safer alternative particularly in patients in whom ionizing radiation and/or contrast exposure should be limited. Although MRA is less accurate in detecting smaller perforators of caliber less than 1.0 mm and the intramuscular course of perforators at the present time, MRA is expected to improve in the future due to the recent developments in technology, making it as accurate as P-CTA. Moreover, it provides the advantage of being radiation-free with fewer contrast reactions.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Chin Hong Ooi ◽  
Raja Vadivelu ◽  
Jing Jin ◽  
Sreejith Kamalalayam Rajan ◽  
Pradip Singha ◽  
...  

Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. The versatility, ease of use and low cost make liquid marbles an attractive platform...


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4916 ◽  
Author(s):  
Qiaoyun Wu ◽  
Yunzhe Zhang ◽  
Qian Yang ◽  
Ning Yuan ◽  
Wei Zhang

The vital importance of rapid and accurate detection of food borne pathogens has driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use. This review covers the following three aspects: food borne pathogens and conventional detection methods, the design and fabrication of electrochemical DNA biosensors and several techniques for improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA biosensors in the field of food borne pathogen detection, we also predict and prospect future research focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials (enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal reading devices).


2021 ◽  
pp. 1-11
Author(s):  
Suphawimon Phawinee ◽  
Jing-Fang Cai ◽  
Zhe-Yu Guo ◽  
Hao-Ze Zheng ◽  
Guan-Chen Chen

Internet of Things is considerably increasing the levels of convenience at homes. The smart door lock is an entry product for smart homes. This work used Raspberry Pi, because of its low cost, as the main control board to apply face recognition technology to a door lock. The installation of the control sensing module with the GPIO expansion function of Raspberry Pi also improved the antitheft mechanism of the door lock. For ease of use, a mobile application (hereafter, app) was developed for users to upload their face images for processing. The app sends the images to Firebase and then the program downloads the images and captures the face as a training set. The face detection system was designed on the basis of machine learning and equipped with a Haar built-in OpenCV graphics recognition program. The system used four training methods: convolutional neural network, VGG-16, VGG-19, and ResNet50. After the training process, the program could recognize the user’s face to open the door lock. A prototype was constructed that could control the door lock and the antitheft system and stream real-time images from the camera to the app.


Author(s):  
Marcel Simsek ◽  
Nongnoot Wongkaew

AbstractNon-enzymatic electrochemical sensors possess superior stability and affordability in comparison to natural enzyme-based counterparts. A large variety of nanomaterials have been introduced as enzyme mimicking with appreciable sensitivity and detection limit for various analytes of which glucose and H2O2 have been mostly investigated. The nanomaterials made from noble metal, non-noble metal, and metal composites, as well as carbon and their derivatives in various architectures, have been extensively proposed over the past years. Three-dimensional (3D) transducers especially realized from the hybrids of carbon nanomaterials either with metal-based nanocatalysts or heteroatom dopants are favorable owing to low cost, good electrical conductivity, and stability. In this critical review, we evaluate the current strategies to create such nanomaterials to serve as non-enzymatic transducers. Laser writing has emerged as a powerful tool for the next generation of devices owing to their low cost and resultant remarkable performance that are highly attractive to non-enzymatic transducers. So far, only few works have been reported, but in the coming years, more and more research on this topic is foreseeable. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document