Applications of genome editing tools in stem cells towards regenerative medicine: An update

Author(s):  
Wilfried A Kues ◽  
Dharmendra Kumar ◽  
Naresh L Selokar ◽  
Thirumala Rao Talluri

: Precise and site specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulating of any gene in various types of cells with target specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, make alterations and cure diseases permanently that are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also shown to have a significant improvement in clinical trials. However, their widespread use in research revealed potential safety issues, which need to be addressed before implementing such techniques in clinical purposes. Significant and valiant attempts are being made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.

2015 ◽  
Vol 27 (1) ◽  
pp. 108
Author(s):  
H. Matsunari ◽  
M. Watanabe ◽  
K. Nakano ◽  
A. Uchikura ◽  
Y. Asano ◽  
...  

Genome editing technologies have been used as a powerful strategy for the generation of genetically modified pigs. We previously developed genetically modified clone pigs with organogenesis-disabled phenotypes, as well as pigs exhibiting diseases with similar features to those of humans. Here, we report the production efficiency of various gene knockout cloned pigs from somatic cells that were genetically modified using zinc finger nucleases (ZFN) or transcription activator-like effector nucleases (TALEN). The ZFN- or TALEN-encoding mRNAs, which targeted 7 autosomal or X-linked genes, were introduced into porcine fetal fibroblast cells using electroporation. Clonal cell populations carrying induced mutations were selected after limiting dilution. The targeted portion of the genes was amplified using PCR, followed by sequencing and mutation analysis. Among the collected knockout cell colonies, cells showing good proliferation and morphology were selected and used for somatic cell nuclear transfer (SCNT). In vitro-matured oocytes were obtained from porcine cumulus-oocyte complexes cultured in NCSU23-based medium and were used to obtain recipient oocytes for SCNT after enucleation. SCNT was performed as reported previously (Matsunari et al. 2008). The cloned embryos were cultured for 7 days in porcine zygote medium (PZM)-5 to assess their developmental ability. Cloned embryos were transplanted into the oviduct or uterus of oestrus-synchronized recipient gilts to evaluate their competence to develop to fetuses or piglets. Cloned embryos reconstructed with 7 types of knockout cells showed equal development to blastocysts compared with those derived from the wild-type cells (54.5–83.3% v. 60.7%). Our data (Table 1) demonstrated that the reconstructed embryos derived from knockout cells could efficiently give rise to cloned offspring regardless of the type of genome editing methodology (i.e. ZFN or TALEN). Table 1.Production efficiency of gene knockout cloned pigs using genome editing This study was supported by JST, ERATO, the Nakauchi Stem Cell and Organ Regeneration Project, JST, CREST, Meiji University International Institute for Bio-Resource Research (MUIIBR), and JSPS KAKENHI Grant Number 26870630.


2019 ◽  
Vol 20 (16) ◽  
pp. 4045 ◽  
Author(s):  
Ali Razzaq ◽  
Fozia Saleem ◽  
Mehak Kanwal ◽  
Ghulam Mustafa ◽  
Sumaira Yousaf ◽  
...  

Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.


Author(s):  
Anuradha Bhardwaj ◽  
Vikrant Nain

Abstract Background Genome of an organism has always fascinated life scientists. With the discovery of restriction endonucleases, scientists were able to make targeted manipulations (knockouts) in any gene sequence of any organism, by the technique popularly known as genome engineering. Though there is a range of genome editing tools, but this era of genome editing is dominated by the CRISPR/Cas9 tool due to its ease of design and handling. But, when it comes to clinical applications, CRISPR is not usually preferred. In this review, we will elaborate on the structural and functional role of designer nucleases with emphasis on TALENs and CRISPR/Cas9 genome editing system. We will also present the unique features of TALENs and limitations of CRISPRs which makes TALENs a better genome editing tool than CRISPRs. Main body Genome editing is a robust technology used to make target specific DNA modifications in the genome of any organism. With the discovery of robust programmable endonucleases-based designer gene manipulating tools such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein (CRISPR/Cas9), the research in this field has experienced a tremendous acceleration giving rise to a modern era of genome editing with better precision and specificity. Though, CRISPR-Cas9 platform has successfully gained more attention in the scientific world, TALENs and ZFNs are unique in their own ways. Apart from high-specificity, TALENs are proven to target the mitochondrial DNA (mito-TALEN), where gRNA of CRISPR is difficult to import. This review talks about genome editing goals fulfilled by TALENs and drawbacks of CRISPRs. Conclusions This review provides significant insights into the pros and cons of the two most popular genome editing tools TALENs and CRISPRs. This mini review suggests that, TALENs provides novel opportunities in the field of therapeutics being highly specific and sensitive toward DNA modifications. In this article, we will briefly explore the special features of TALENs that makes this tool indispensable in the field of synthetic biology. This mini review provides great perspective in providing true guidance to the researchers working in the field of trait improvement via genome editing.


2019 ◽  
Vol 116 (5) ◽  
pp. 894-907 ◽  
Author(s):  
Eva Vermersch ◽  
Charlène Jouve ◽  
Jean-Sébastien Hulot

Abstract Cardiovascular diseases are among the main causes of morbidity and mortality in Western countries and considered as a leading public health issue. Therefore, there is a strong need for new disease models to support the development of novel therapeutics approaches. The successive improvement of genome editing tools with zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and more recently with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has enabled the generation of genetically modified cells and organisms with much greater efficiency and precision than before. The simplicity of CRISPR/Cas9 technology made it especially suited for different studies, both in vitro and in vivo, and has been used in multiple studies evaluating gene functions, disease modelling, transcriptional regulation, and testing of novel therapeutic approaches. Notably, with the parallel development of human induced pluripotent stem cells (hiPSCs), the generation of knock-out and knock-in human cell lines significantly increased our understanding of mutation impacts and physiopathological mechanisms within the cardiovascular domain. Here, we review the recent development of CRISPR–Cas9 genome editing, the alternative tools, the available strategies to conduct genome editing in cardiovascular cells with a focus on its use for correcting mutations in vitro and in vivo both in germ and somatic cells. We will also highlight that, despite its potential, CRISPR/Cas9 technology comes with important technical and ethical limitations. The development of CRISPR/Cas9 genome editing for cardiovascular diseases indeed requires to develop a specific strategy in order to optimize the design of the genome editing tools, the manipulation of DNA repair mechanisms, the packaging and delivery of the tools to the studied organism, and the assessment of their efficiency and safety.


2020 ◽  
Vol 21 (24) ◽  
pp. 9604
Author(s):  
Edyta Janik ◽  
Marcin Niemcewicz ◽  
Michal Ceremuga ◽  
Lukasz Krzowski ◽  
Joanna Saluk-Bijak ◽  
...  

The discovery of clustered, regularly interspaced short palindromic repeats (CRISPR) and their cooperation with CRISPR-associated (Cas) genes is one of the greatest advances of the century and has marked their application as a powerful genome engineering tool. The CRISPR–Cas system was discovered as a part of the adaptive immune system in bacteria and archaea to defend from plasmids and phages. CRISPR has been found to be an advanced alternative to zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) for gene editing and regulation, as the CRISPR–Cas9 protein remains the same for various gene targets and just a short guide RNA sequence needs to be altered to redirect the site-specific cleavage. Due to its high efficiency and precision, the Cas9 protein derived from the type II CRISPR system has been found to have applications in many fields of science. Although CRISPR–Cas9 allows easy genome editing and has a number of benefits, we should not ignore the important ethical and biosafety issues. Moreover, any tool that has great potential and offers significant capabilities carries a level of risk of being used for non-legal purposes. In this review, we present a brief history and mechanism of the CRISPR–Cas9 system. We also describe on the applications of this technology in gene regulation and genome editing; the treatment of cancer and other diseases; and limitations and concerns of the use of CRISPR–Cas9.


2018 ◽  
Vol 19 (9) ◽  
pp. 2721 ◽  
Author(s):  
Beatrice Ho ◽  
Sharon Loh ◽  
Woon Chan ◽  
Boon Soh

Genome editing has been well established as a genome engineering tool that enables researchers to establish causal linkages between genetic mutation and biological phenotypes, providing further understanding of the genetic manifestation of many debilitating diseases. More recently, the paradigm of genome editing technologies has evolved to include the correction of mutations that cause diseases via the use of nucleases such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and more recently, Cas9 nuclease. With the aim of reversing disease phenotypes, which arise from somatic gene mutations, current research focuses on the clinical translatability of correcting human genetic diseases in vivo, to provide long-term therapeutic benefits and potentially circumvent the limitations of in vivo cell replacement therapy. In this review, in addition to providing an overview of the various genome editing techniques available, we have also summarized several in vivo genome engineering strategies that have successfully demonstrated disease correction via in vivo genome editing. The various benefits and challenges faced in applying in vivo genome editing in humans will also be discussed.


2021 ◽  
Author(s):  
Sylwia Bobis-Wozowicz ◽  
Karolina Kania ◽  
Kinga Nit ◽  
Natalia Blazowska ◽  
Katarzyna Kmiotek-Wasylewska ◽  
...  

Precise genome editing using designer nucleases (DNs), such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system, has become a method of choice in a variety of biological and biomedical applications in recent years. Notably, efficacy of these systems is currently under scrutiny in about 50 clinical trials. Although high DNs activity in various cell types in vitro has already been achieved, efficient in vivo genome editing remains a challenge. To solve this problem, we employed stem cells-derived extracellular vesicles (EVs) as carriers of DNs. We used umbilical cord-derived mesenchymal stem cells (UC-MSCs) and induced pluripotent stem cells (iPSCs) as EV-producer cells, since they are both applied in regenerative medicine. In our proof-of-concept studies, we achieved up to 50% of EGFP marker gene knockout in vivo using EVs carrying either ZFN, TALEN or the CRISPR/Cas9 system, particularly in the liver. Importantly, we obtained almost 50% of modified alleles in the liver of the experimental animals, when targeting the Pcsk9 gene, whose overexpression is implicated in hypercholesterolemia. Taken together, our data provide strong evidence that stem cells-derived EVs constitute a robust tool in delivering DNs in vivo, which may be harnessed to clinical practice in the future.


2017 ◽  
Author(s):  
Ioannis Mougiakos ◽  
Prarthana Mohanraju ◽  
Elleke F. Bosma ◽  
Valentijn Vrouwe ◽  
Max Finger Bou ◽  
...  

AbstractCRISPR-Cas9 based genome engineering tools have revolutionized fundamental research and biotechnological exploitation of both eukaryotes and prokaryotes. However, the mesophilic nature of the established Cas9 systems does not allow for applications that require enhanced stability, including engineering at elevated temperatures. Here, we identify and characterize ThermoCas9: an RNA-guided DNA-endonuclease from the thermophilic bacterium Geobacillus thermodenitrificans T12. We show that ThermoCas9 is active in vitro between 20°C and 70°C, a temperature range much broader than that of the currently used Cas9 orthologues. Additionally, we demonstrate that ThermoCas9 activity at elevated temperatures is strongly associated with the structure of the employed sgRNA. Subsequently, we develop ThermoCas9-based engineering tools for gene deletion and transcriptional silencing at 55°C in Bacillus smithii and for gene deletion at 37°C in Pseudomonas putida. Altogether, our findings provide fundamental insights into a thermophilic CRISPR-Cas family member and establish the first Cas9-based bacterial genome editing and silencing tool with a broad temperature range.


Acta Naturae ◽  
2014 ◽  
Vol 6 (3) ◽  
pp. 19-40 ◽  
Author(s):  
A. A. Nemudryi ◽  
K. R. Valetdinova ◽  
S. P. Medvedev ◽  
S. M. Zakian

Precise studies of plant, animal and human genomes enable remarkable opportunities of obtained data application in biotechnology and medicine. However, knowing nucleotide sequences isnt enough for understanding of particular genomic elements functional relationship and their role in phenotype formation and disease pathogenesis. In post-genomic era methods allowing genomic DNA sequences manipulation, visualization and regulation of gene expression are rapidly evolving. Though, there are few methods, that meet high standards of efficiency, safety and accessibility for a wide range of researchers. In 2011 and 2013 novel methods of genome editing appeared - this are TALEN (Transcription Activator-Like Effector Nucleases) and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems. Although TALEN and CRISPR/Cas9 appeared recently, these systems have proved to be effective and reliable tools for genome engineering. Here we generally review application of these systems for genome editing in conventional model objects of current biology, functional genome screening, cell-based human hereditary disease modeling, epigenome studies and visualization of cellular processes. Additionally, we review general strategies for designing TALEN and CRISPR/Cas9 and analyzing their activity. We also discuss some obstacles researcher can face using these genome editing tools.


Sign in / Sign up

Export Citation Format

Share Document