Anti-Tumor Efficacy of Pyrvinium Pamoate Nanoliposomes in an Experimental Model of Melanoma.

Author(s):  
Mahdi Hatamipour ◽  
Mahmoud R. Jaafari ◽  
Mahtab Zangui ◽  
Neda Shakour ◽  
Amirhossein Sahebkar

Background: Pyrvinium pamoate (PP) is an old drug approved by the FDA for the treatment of pinworm infections. Recently, PP has been introduced as an antitumor agent. However, low aqueous solubility severely limits its potential effects. In this study, we developed a liposomal formulation of pyrvinium pamoate to investigate its in vitro cytotoxicity and in vivo efficacy against melanoma cells. Materials & Methods: As drug carriers, liposomes were fabricated using thin-film method. PP was encapsulated within liposomes using remote loading method. We evaluated morphology, particle size, and Zeta potential of the liposomes. Additionally, high-performance liquid chromatography (HPLC) was employed for qualitative and quantitative analysis. Then we investigated our liposomal PP for its in vitro cytotoxicity as well as the tumor growth inhibition in C57BL/6 mice bearing B16F0 melanoma tumors. Results: Based on the analytical result, the liposomal drug delivery system is a homogeneous and stable colloidal suspension of PP particles. Images of Atomic force microscopy and particle size data showed that all the prepared nanocarrier were spherical with a diameter of approximately 101 nm. According to both in vitro and in vivo studies, nanoliposomal PP exhibited an improved anti-proliferative potential against B16F10 melanoma tumor compared with free PP. Conclusion: Liposomal encapsulation improves water solubility of PP and enhances its anti-cancer activity.

2010 ◽  
Vol 1257 ◽  
Author(s):  
Andrea Fornara ◽  
Alberto Recalenda ◽  
Jian Qin ◽  
Abhilash Sugunan ◽  
Fei Ye ◽  
...  

AbstractNanoparticles consisting of different biocompatible materials are attracting a lot of interest in the biomedical area as useful tools for drug delivery, photo-therapy and contrast enhancement agents in MRI, fluorescence and confocal microscopy. This work mainly focuses on the synthesis of polymeric/inorganic multifunctional nanoparticles (PIMN) based on biocompatible di-block copolymer poly(L,L-lactide-co-ethylene glycol) (PLLA-PEG) via an emulsion-evaporation method. Besides containing a hydrophobic drug (Indomethacin), these polymeric nanoparticles incorporate different visualization agents such as superparamagnetic iron oxide nanoparticles (SPION) and fluorescent Quantum Dots (QDs) that are used as contrast agents for Magnetic Resonance Imaging (MRI) and fluorescence microscopy together. Gold Nanorods are also incorporated in such nanostructures to allow simultaneous visualization and photodynamic therapy. MRI studies are performed with different loading of SPION into PIMN, showing an enhancement in T2 contrast superior to commercial contrast agents. Core-shell QDs absorption and emission spectra are recorded before and after their loading into PIMN. With these polymeric/inorganic multifunctional nanoparticles, both MRI visualization and confocal fluorescence microscopy studies can be performed. Gold nanorods are also synthesized and incorporated into PIMN without changing their longitudinal absorption peak usable for lased excitation and phototherapy. In-vitro cytotoxicity studies have also been performed to confirm the low cytotoxicity of PIMN for further in-vivo studies.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Santanu Chakraborty ◽  
Priyanka Nayak ◽  
Bala Murali Krishna ◽  
Madhusmruti Khandai ◽  
Ashoke Kumar Ghosh

The aim of the present research work was to fabricate aceclofenac loaded pectinate microspheres by ionic gelation method and evaluate the effect of different cross-linking agents and polymer concentration on particle size, encapsulation efficacy and drug release behavior. It was also investigated that whether this pectinate dosage form was able to target the drug release in intestinal region and prevent the different side effect associated with the drug in stomach or not. It was observed that particle size, encapsulation efficacy and in vitro drug release were largely depended on polymer concentration and cross-linking agents. It was also observed that pectinate microspheres showed excellent pH depended mucoadhesive properties and they were able to restrict the drug release in stomach. <em>In vitro</em> drug release study showed that alminium-pectinate microspheres have more sustaining property as compared to barium-pectinate microspheres. Holm-Sidak multiple comparison analysis suggested a significant difference in measured t<sub>50%</sub> values among all the formulations with same cross-linking agent. In vivo studies revealed that the anti inflammatory and analgesic effects induced by pectinate microspheres were significantly high and prolonged as compared to pure drug. So, pectinate microspheres can be an excellent carrier for targeting the delivery of aceclofenac as well as help in improving the patient compliance by prolonging the systemic absorption.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 13510-13510
Author(s):  
S. E. Hahn ◽  
L. A. da Cruz ◽  
D. Sayegh ◽  
A. Ferry ◽  
K. O’Reilly ◽  
...  

13510 Background: CD44 (an adhesion molecule and stem cell antigen), CD59 (a complement-inhibitory molecule), MCSP (an adhesion and cell-cell interactions), and Trop-2 (EpCam a related signaling molecule) represent a group of biologically-significant cancer proteins acting through distinct mechanisms. We have described Abs with in vitro and in vivo cancer suppressive activity to this group of targets. However, their effectiveness depends on the phenotype of malignant cells; cell response should correlate with expression of its Ag, and tumor cells represent a heterogeneous group of non-synchronous cells. The present study describes the efficacy of those antibodies in breast cancer models and the prevalence of their antigen targets in a survey of human breast cancer tissues. Methods: In vivo activity of antibodies ARH460–16–2 (anti-CD44), AR36A36.11.1 (anti-CD59), AR11BD-2E11–2 (anti-MCSP), and AR47A6.4.2 (anti-Trop-2) in estrogen-dependent and hormone sensitive xenograft models of human breast cancer was examined. In addition, distribution of the antigens in breast cancer was determined by immunohistochemistry using tumor tissue arrays of breast cancer sections from distinct patients. Results: Treatment of an established breast cancer model with ARH460–16–2 resulted in 51% median tumor xenograft suppression (p<0.05), as well as increased survival in an MDA-MB-231 (breast cancer) grafted model. 63% of human breast cancer sections expressed the CD44 antigen. Treatment with anti-CD59 antibody AR36A36.11.1 resulted in 68% xenograft tumor suppression (p<0.005). AR47A6.4.2 anti-Trop-2 antibody bound to 100% of human breast cancer sections tested, and showed efficacy in the estrogen- dependent MCF-7 breast cancer model. Anti-MCSP antibody AR11BD-2E11–2 demonstrated 80% tumor growth inhibition (p<0.001), increased survival in an estrogen-dependent model of breast cancer, and was found to stain 62% of breast cancer tissues examined. Conclusions: The heterogeneity of breast cancer cell phenotypes in in vitro and in vivo studies and variable composite cellular antigen targets is the basis for the therapeutic use of multiple antibodies, each with independent mechanisms of action, and offers a rationale for combined antibody therapy in selected patients. [Table: see text]


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 205-205
Author(s):  
Thomas Nelius ◽  
Courtney Jarvis ◽  
Dalia Martinez-Marin ◽  
Stephanie Filleur

205 Background: Docetaxel/DTX and cabazitaxel/CBZ have shown promise in the treatment of metastatic Castration-Refractory Prostate Cancer/mCPRC however, comparative studies are missing. Toxicities of these drugs are significant, urging the need to modify taxane regimens. Recently, low-dose metronomic/LDM treatments using conventional chemotherapeutic drugs have shown benefits in CPRC in improving the effect of anti-angiogenic agents. Previously, we have demonstrated that LDM-DTX in combination with PEDF curbs significantly CRPC growth, limits metastases formation and prolongs survival in vivo. In this study, we intended to compare the cytotoxic effect of CBZ and DTX on CRPC cells in vitro and CL1 tumors in vivo. Methods: PC3, DU145 cell lines were from ATCC.CL1 cells were obtained from androgen-deprived LNCaP cells. Cell proliferation was assessed by crystal violet staining and cell cycle analyses. In vitro cytotoxicity assays were performed on CL1 cells/RAW264.7 macrophages co-cultures treated with PEDF and increasing doses of taxanes. For the in vivo studies, CL1 cells were engineered to stably express the DsRed Express protein +/- PEDF. PEDF anti-tumor effects were assessed on s.c. xenografts treated with DTX (5mg/kg ip ev. 4 day) as reference, CBZ (5mg/kg ip ev. 4 days, 1mg/kg for 10 days, 0.5mg/kg q.a.d. and 0.1mg/kg daily) or placebo. Results: CBZ limits cell proliferation with a greater efficacy than DTX in all CRPC cell lines tested. DU145 presented the largest difference. High doses of taxane blocked tumor cells in mitosis, whereas LDM increased the SubG1 population. This effect was significantly higher in DU145 cells treated with CBZ. In vivo, 5mg/kg CBZ delayed tumor growth more efficiently than 5mg/kg DTX. PEDF/5mg/kg CBZ markedly delayed tumor growth compared to all treatments. Finally, engulfment of tumor cells by macrophages was higher in combined treatments suggesting an inflammation-related process. Conclusions: CBZ is more efficient than DTX both in vitro and in vivo.The data also reinforce PEDF as a promising anti-neoplasic agent in combination with LDM taxane chemotherapies.


2013 ◽  
Vol 63 (4) ◽  
pp. 479-491 ◽  
Author(s):  
Bhavesh P. Depani ◽  
Anuja A. Naik ◽  
Hema A. Nair

Abstract Sterile thermoreversibly gelling systems based on chitosan- glycerol phosphate were developed for intraperitoneal delivery of the antineoplastic agent 5-FU. The formulation was evaluated for gelling characteristics and in vitro drug release. Drug free gels were evaluated for in vitro cytotoxicity in L-929 mouse fibroblast cells. Drug loaded gels were subjected to acute toxicity studies in Swiss albino mice via intraperitoneal route and efficacy studies via intratumoral injections in subcutaneous colon carcinoma bearing BALB/c mice. The formulations gelled reversibly in 8 min at 37 °C and provided prolonged release of the drug. Drug free systems showed dose dependent cytotoxicity in fibroblast cells, while in vivo studies revealed a 2.8-fold increase in LD50 of 5-FU administered intraperitoneally as the developed system. Tumor volume measurements showed comparable efficacy of 5-FU administered as gel and commercial injection with a greatly improved safety profile of the former as adjudged from mortality and body weight measurements.


2020 ◽  
Vol 21 (19) ◽  
pp. 7177
Author(s):  
Nikita Simone Pillay ◽  
Aliscia Daniels ◽  
Moganavelli Singh

Current chemotherapeutic drugs, although effective, lack cell-specific targeting, instigate adverse side effects in healthy tissue, exhibit unfavourable bio-circulation and can generate drug-resistant cancers. The synergistic use of nanotechnology and gene therapy, using nanoparticles (NPs) for therapeutic gene delivery to cancer cells is hereby proposed. This includes the benefit of cell-specific targeting and exploitation of receptors overexpressed in specific cancer types. The aim of this study was to formulate dendrimer-functionalized selenium nanoparticles (PAMAM-SeNPs) containing the targeting moiety, folic acid (FA), for delivery of pCMV-Luc-DNA (pDNA) in vitro. These NPs and their gene-loaded nanocomplexes were physicochemically and morphologically characterized. Nucleic acid-binding, compaction and pDNA protection were assessed, followed by cell-based in vitro cytotoxicity, transgene expression and apoptotic assays. Nanocomplexes possessed favourable sizes (<150 nm) and ζ-potentials (>25 mV), crucial for cellular interaction, and protected the pDNA from degradation in an in vivo simulation. PAMAM-SeNP nanocomplexes exhibited higher cell viability (>85%) compared to selenium-free nanocomplexes (approximately 75%), confirming the important role of selenium in these nanocomplexes. FA-conjugated PAMAM-SeNPs displayed higher overall transgene expression (HeLa cells) compared to their non-targeting counterparts, suggesting enhanced receptor-mediated cellular uptake. Overall, our results bode well for the use of these nano-delivery vehicles in future in vivo studies.


2019 ◽  
Vol 19 (13) ◽  
pp. 1618-1626 ◽  
Author(s):  
Mahdi Hatamipour ◽  
Mahmoud R. Jaafari ◽  
Amir A. Momtazi-Borojeni ◽  
Mahin Ramezani ◽  
Amirhossein Sahebkar

Background: Niclosamide is an FDA-approved and old anti-helminthic drug used to treat parasitic infections. Recent studies have shown that niclosamide has broad anti-tumor effects relevant to the treatment of cancer. However, this drug has a low aqueous solubility hindering its systemic use. Herein, we report the preparation and characterization of niclosamide nanoliposomes and their in vivo anti-tumor effects. Methods: Nanoliposomes were prepared using thin-film method and the drug was encapsulated with a remote loading method. The nanoliposomes were investigated by the observation of morphology, analysis of particle size and zeta potential. Additionally, qualitative and quantitative analyses were performed using HPLC. We assessed the in vitro cytotoxicity of the nanoliposomal niclosamide on B16F10 melanoma cells. Inhibition of tumor growth was investigated in C57BL/6 mice bearing B16F0 melanoma cancer. Results: Analytical results indicated that the nanoliposomal system is a homogeneous and stable colloidal dispersion of niclosamide particles. Atomic force microscopy images and particle size analysis revealed that all niclosamide particles had a spherical shape with a diameter of approximately 108nm. According to in vitro and in vivo studies, nanoliposomal niclosamide exhibited a better anti-tumor activity against B16F10 melanoma tumor compared with free niclosamide. Conclusion: Nanoliposomal encapsulation enhanced the aqueous solubility of niclosamide and improved its anti-tumor properties.


2006 ◽  
Vol 41 (5) ◽  
pp. 670-674 ◽  
Author(s):  
Man Na ◽  
Cheng Yiyun ◽  
Xu Tongwen ◽  
Ding Yang ◽  
Wang Xiaomin ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4897
Author(s):  
Bárbara Socas-Rodríguez ◽  
M. Vanessa Torres-Cornejo ◽  
Gerardo Álvarez-Rivera ◽  
Jose A. Mendiola

In this work, a review about the applicability of eutectic solvents, mainly deep eutectic solvents (DES) and natural deep eutectic solvents (NADES), for the extraction of bioactive compounds from natural products has been carried out. These alternative solvents have shown not only to have high extraction yields but also to be environmentally friendly, exhibiting very low or almost no toxicity, compared to conventional organic solvents. The last trends and main extraction methods that have been most widely used in studies using these emerging solvents have been reviewed, as well as the varied natural sources in which they have been used, including agro-food by-products. Besides the toxicity, biodegradability of these solvents is reviewed. Likewise, different reported bioactivity tests have been included, in which extracts obtained with these ecological solvents have been tested from antioxidant activity analysis to in vivo studies with rats, through in vitro cytotoxicity tests.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2658
Author(s):  
Rúben G. R. Pinheiro ◽  
Marina Pinheiro ◽  
Ana Rute Neves

Quercetin is a flavonol present in many vegetables and fruits. Generally, quercetin can be found in aglycone and glycoside forms, mainly in leaves. The absorption of this compound occurs in the large and small intestine, where it suffers glucuronidation, sulfidation, and methylation to improve hydrophilicity. After metabolization, which occurs mainly in the gut, it is distributed throughout the whole organism and is excreted by feces, urine, and exhalation of carbon dioxide. Despite its in vitro cytotoxicity effects, in vivo studies with animal models ensure its safety. This compound can protect against cancer, cardiovascular diseases, chronic inflammation, oxidative stress, and neurodegenerative diseases due to its radical scavenging and anti-inflammatory properties. However, its poor bioavailability dampens the potential beneficial effects of this flavonoid. In that sense, many types of nanocarriers have been developed to improve quercetin solubility, as well as to design tissue-specific delivery systems. All these studies manage to improve the bioavailability of quercetin, allowing it to increase its concentration in the desired places. Collectively, quercetin can become a promising compound if nanotechnology is employed as a tool to enhance its therapeutic efficacy.


Sign in / Sign up

Export Citation Format

Share Document