scholarly journals Root Resorption of Maxillary Posterior Teeth after Rapid Maxillary Expansion: A Comprehensive Review of the Current Evidence from in-vitro and in-vivo Studies

2021 ◽  
Vol 15 (1) ◽  
pp. 97-101
Author(s):  
Vincenzo Ronsivalle ◽  
Federica Casella ◽  
Grazia Fichera ◽  
Orazio Bennici ◽  
Cristina Conforte ◽  
...  

Background: The application of heavy forces to the dentition, as those produced during a Rapid Maxillary Expansion (RME), has been associated in the literature with the development of root resorption of maxillary posterior teeth. Objective: The aim of the present manuscript was to report the available data from in-vitro and in-vivo studies that can elucidate the biological processes of resorption and repair of radicular cementum after RME. Methods: Studies evaluating the occurrence of root resorption after RME by means of histological and radiographic methodology were included. We detailed the changes of the radicular anatomy after RME and provided a synthesis of the most valuable scientific evidence showing the biological processes behind the potential modifications of radicular anatomy. Results. Loss of cementum material and reduction of radicular volumes were seen after rapid maxillary expansion. A small radicular volumetric recovery of anchored teeth occurred after the retention period; this reparative phenomenon was caused by cementum deposition without the reattachment of periodontal fibers, supporting the detrimental effects associated with RR. Conclusion:Retention period and the timing of radiographic examination could influence the extension of radicular resorption detected after RME since root resorption and cementum repair may occur at the same time at this stage.

2021 ◽  
Author(s):  
Sıddık Malkoç ◽  
Rukiye Alçin ◽  
Aslıhan Uzel

ABSTRACT Objectives To evaluate the volume, amount, and localization of root resorption in the upper first premolars by micro–computed tomography (micro-CT) after three different rapid maxillary expansion appliances and two different activation rhythms. Materials and Methods The patients were divided into three groups; Hyrax, acrylic cap splint (ACS), and full coverage acrylic bonded (FCAB) appliances. Each group was then divided into the following two subgroups: rapid maxillary expansion (RME) and semirapid maxillary expansion (SRME). After expansion was completed, the appliances were stabilized for 12 weeks during the retention period. For each group, 10 premolars (for a total of 60 premolars) were scanned with the micro-CT (SkyScan). The reconstructed 3D images of each root sample were divided into six regions. The resorption craters on these six different root surfaces were analyzed by special CTAn (SkyScan) software for direct volumetric measurements. Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests were used for statistical analysis. Results The total volume of root resorption was less with FCAB than with ACS and Hyrax (P < .001). In all groups, a greater volume of resorption was found on the buccal surface than on the lingual surface (P < .001). No significant differences were found between the RME and SRME groups (P > .05). Conclusions All expansion appliances caused root resorption in the upper first premolar teeth, but FCAB may be safer in terms of root resorption. The resorption craters were generally concentrated on the buccal surface. There was no effect of activation rhythm on root resorption.


ASJ. ◽  
2020 ◽  
Vol 2 (40) ◽  
pp. 20-22
Author(s):  
A.K. Al Dzhafari ◽  
S.A. Ulyanovskaya

Rapid Maxillary expansion or palatal expansion as it is sometimes called, occupies unique niche in dentofacial therapy. Rapid Maxillary expansion (RME) is a skeletal type of expansion that involves the separation of the mid-palatal suture and movement of the maxillary shelves away from each other. RME effects the maxillary complex, palatal vaults, maxillary anterior and posterior teeth, adjacent periodontal structures to bring about an expansion in the maxillary arch. Morphogenesis and anatomical features of the upper jaw determine the choice of the method of rapid palatal expansion with narrowing of the upper dentition, as an effective method for eliminating congenital deformities of the maxillofacial region. The majority of dental transverse measurements changed significantly as a result of RME. The maturity of the maxillofacial structures determines the timing and degree of success of rapid palatal dilatation treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Constance Schmelzer ◽  
Mitsuaki Kitano ◽  
Gerald Rimbach ◽  
Petra Niklowitz ◽  
Thomas Menke ◽  
...  

MicroRNAs (miRs) are involved in key biological processes via suppression of gene expression at posttranscriptional levels. According to their superior functions, subtle modulation of miR expression by certain compounds or nutrients is desirable under particular conditions. Bacterial lipopolysaccharide (LPS) induces a reactive oxygen species-/NF-κB-dependent pathway which increases the expression of the anti-inflammatory miR-146a. We hypothesized that this induction could be modulated by the antioxidant ubiquinol-10. Preincubation of human monocytic THP-1 cells with ubiquinol-10 reduced the LPS-induced expression level of miR-146a to 78.9±13.22%. In liver samples of mice injected with LPS, supplementation with ubiquinol-10 leads to a reduction of LPS-induced miR-146a expression to 78.12±21.25%. From these consistent in vitro and in vivo data, we conclude that ubiquinol-10 may fine-tune the inflammatory response via moderate reduction of miR-146a expression.


2015 ◽  
Vol 86 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Débora C Martins ◽  
Bernardo Q Souki ◽  
Paula L Cheib ◽  
Gerluza A.B Silva ◽  
Igor D.G Reis ◽  
...  

ABSTRACT Objective:  To compare external root resorption (ERR) when bands and wires are used as orthodontic anchorage during rapid maxillary expansion (RME). Materials and Methods:  Histologic analysis was performed on 108 sites from 18 maxillary first premolars and on 36 sites from six mandibular first premolars in nine subjects (mean age = 15.2 ± 1.4 years) 3 months after RME. Maxillary teeth were pooled into two groups (n = 54 each) according to the type of orthodontic anchorage (band group [BG] vs wire group [WG]). Anchorage type was randomly chosen in a split-mouth design. Mandibular first premolars, which were not subjected to orthodontic forces, were used as the control group (CG). Results:  All premolars in the BG and WG showed ERR at the level of the cementum and dentin. Repair with cementum cells was observed in all resorption areas, but complete repair was rarely found. No statistically significant difference was found between the BG and WG with regard to the ERR. No association was found between the root height position (middle or cervical third) and the incidence of ERR. Buccal root surfaces showed a higher amount of ERR compared with the palatal and interproximal surfaces. ERR was not found in any teeth in the CG. Conclusion:  All maxillary first premolars subjected to RME showed ERR and partial cementum repair. Banded teeth did not develop more ERR than nonbanded anchorage teeth.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rodrigo Cuiabano Paes Leme ◽  
Raquel Bandeira da Silva

It has been demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid, diclofenac, and ibuprofen, have anti-biofilm activity in concentrations found in human pharmacokinetic studies, which could fuel an interest in repurposing these well tolerated drugs as adjunctive therapies for biofilm-related infections. Here we sought to review the currently available data on the anti-biofilm activity of NSAIDs and its relevance in a clinical context. We performed a systematic literature review to identify the most commonly tested NSAIDs drugs in the last 5 years, the bacterial species that have demonstrated to be responsive to their actions, and the emergence of resistance to these molecules. We found that most studies investigating NSAIDs’ activity against biofilms were in vitro, and frequently tested non-clinical bacterial isolates, which may not adequately represent the bacterial populations that cause clinically-relevant biofilm-related infections. Furthermore, studies concerning NSAIDs and antibiotic resistance are scarce, with divergent outcomes. Although the potential to use NSAIDs to control biofilm-related infections seems to be an exciting avenue, there is a paucity of studies that tested these drugs using appropriate in vivo models of biofilm infections or in controlled human clinical trials to support their repurposing as anti-biofilm agents.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mark Austin Hanson ◽  
Anna Dostálová ◽  
Camilla Ceroni ◽  
Mickael Poidevin ◽  
Shu Kondo ◽  
...  

Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete most known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking these ten AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.


2020 ◽  
Vol 21 (21) ◽  
pp. 7984
Author(s):  
Alessia Mongelli ◽  
Sandra Atlante ◽  
Veronica Barbi ◽  
Tiziana Bachetti ◽  
Fabio Martelli ◽  
...  

The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non–senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.


2020 ◽  
Vol 21 (18) ◽  
pp. 6541
Author(s):  
Dong Wook Choi ◽  
Sang Woo Cho ◽  
Seok-Geun Lee ◽  
Cheol Yong Choi

The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin as one of 7 different isoprene flavonoid derivatives in the root bark of Morus. However, the remarkable antioxidant capacity of morusin with the unexpected potential for health benefits over the other flavonoid derivatives has recently sparked scientific interest in the biochemical identification of target proteins and signaling pathways and further clinical relevance. In this review, we discuss recent advances in the understanding of the functional roles of morusin in multiple biological processes such as inflammation, apoptosis, metabolism and autophagy. We also highlight recent in vivo and in vitro evidence on the clinical potential of morusin treatment for multiple human pathologies including inflammatory diseases, neurological disorders, diabetes, cancer and the underlying mechanisms.


Sign in / Sign up

Export Citation Format

Share Document