Comparison of Anticancer Properties of Annona muricata L. Acetonic and Methanolic Leaf Extracts

2019 ◽  
Vol 9 (4) ◽  
pp. 312-320
Author(s):  
Jéssica de Castro Nascimento ◽  
Rosa Maria do Vale Bosso ◽  
Maria Carolina Anholeti ◽  
Elaine da Silva Castro ◽  
Maximino Alencar Bezerra Junior ◽  
...  

Background: Phytochemical studies of Annona muricata showed the presence of bioactive components with anticancer activity. We compared the anticancer properties of crude acetonic and methanolic A. muricata leaf extracts. Methods: The viabilities of different cell lines (A549, U87, U251, K562 and VERO) treated with A. muricata acetonic or methanolic leaf extracts were measured using the MTT assay. Apoptosis induction, cell cycle and cytoskeleton rearrangements were evaluated in K562 by flow cytometry or fluorescence microscopy. Results: Chemical analyses of the A. muricata extracts showed differences in their composition. The K562 cell line was the most sensitive to the treatment with the acetonic and methanolic extracts, and the IC50 values, respectively were 28.82 (24.41 - 34.69) and 32.49 (27.21 - 40.16) μg/mL. Both extracts induced apoptotic cell death and G0/G1 phase cell cycle arrest. For the first time, cytoskeleton rearrangements were observed in the K562 cell line treated with methanolic extract. Conclusion: These findings suggest that both A. muricata extracts exhibit antileukemic potential and represent a promising source of novel compounds with anticancer activity.

Author(s):  
Ebru Zeytün ◽  
Mehlika D. Altıntop ◽  
Belgin Sever ◽  
Ahmet Özdemir ◽  
Doha E. Ellakwa ◽  
...  

Background: After the milestone approval of imatinib, more than 25 antitumor agents targeting kinases have been approved, and several promising candidates are in various stages of clinical evaluation. Objectives : Due to the importance of thiazole scaffold in targeted anticancer drug discovery, the goal of this work is the design of new thiazolyl hydrazones as potent ABL1 kinase inhibitors for the management of chronic myeloid leukemia (CML). Methods: New thiazolyl hydrazones (2a-p) were synthesized and investigated for their cytotoxic effects on K562 CML cell line. Compounds 2h, 2j and 2l showed potent anticancer activity against K562 cell line. The cytotoxic effects of these compounds on other leukemia (HL-60, MT-2 and Jurkat) and HeLa human cervical carcinoma cell lines were also investigated. Furthermore, their cytotoxic effects on mitogen-activated peripheral blood mononuclear cells (MA-PBMCs) were evaluated to determine their selectivity. Due to its selective and potent anticancer activity, compound 2j was benchmarked for its apoptosis-inducing potential on K562 cell line and inhibitory effects on eight different tyrosine kinases (TKs) including ABL1 kinase. In order to investigate the binding mode of compound 2j into the ATP binding site of ABL1 kinase (PDB: 1IEP), molecular docking study was conducted using MOE 2018.01 program. The QikProp module of Schrödinger’s Molecular modelling package was used to predict the pharmacokinetic properties of compounds 2a-p. Results: 4-(4-(Methylsulfonyl)phenyl)-2-[2-((1,3-benzodioxol-4-yl)methylene)hydrazinyl]thiazole (2j) showed antiproliferative activity against K562 cell line with an IC50 value of 8.87±1.93 µM similar to imatinib (IC50= 6.84±1.11 µM). Compound 2j was found to be more effective than imatinib on HL-60, Jurkat and MT-2 cells. Compound 2j also showed cytotoxic activity against HeLa cell line similar to imatinib. The higher selectivity index value of compound 2j than imatinib indicated that its antiproliferative activity was selective. Compound 2j also induced apoptosis in K562 cell line more than imatinib. Among eight TKs, compound 2j showed the strongest inhibitory activity against ABL1 kinase enzyme (IC50= 5.37±1.17 µM). According to molecular docking studies, compound 2j exhibited high affinity to the ATP binding site of ABL1 kinase forming significant intermolecular interactions. On the basis of in silico studies, this compound did not violate Lipinski's rule of five and Jorgensen's rule of three. Conclusion: Compound 2j stands out as a potential orally bioavailable ABL1 kinase inhibitor for the treatment of CML.


2018 ◽  
Vol 1155 ◽  
pp. 450-456 ◽  
Author(s):  
Maryam Sahlabadi ◽  
Marzieh Daryanavard ◽  
Hassan Hadadzadeh ◽  
Zahra Amirghofran

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2130
Author(s):  
Regiane Costa de Oliveira ◽  
Gemilson Soares Pontes ◽  
Aleksandr Kostyuk ◽  
Gabriel B. Coutinho Camargo ◽  
Anamika Dhyani ◽  
...  

Cancer still remains a major public health concern around the world and the search for new potential antitumor molecules is essential for fighting the disease. This study evaluated the anticancer and immunomodulatory potential of the newly synthetized ellipticine derivate: sodium bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (Br-Ell-SO3Na). It was prepared by the chlorosulfonation of 9-bromoellipticine. The ellipticine-7-sulfonic acid itself is not soluble, but its saponification with sodium hydroxide afforded a water-soluble sodium salt. The cytotoxicity of Br-Ell-SO3Na was tested against cancerous (K562 cell line) and non-cancerous cells (Vero cell line and human peripheral blood mononuclear cells (PBMC)) using a Methylthiazoletetrazolium (MTT) assay. Cell cycle arrest was assessed by flow cytometry and the immunomodulatory activity was analyzed through an enzyme-linked immunosorbent assay (ELISA). The results showed that the Br-Ell-SO3Na molecule has specific anticancer activity (IC50 = 35 µM) against the K562 cell line, once no cytotoxicity effect was verified against non-cancerous cells. Cell cycle analysis demonstrated that K562 cells treated with Br-Ell-SO3Na were arrested in the phase S. Moreover, the production of IL-6 increased and the expression of IL-8 was inhibited in the human PBMC treated with Br-Ell-SO3Na. The results demonstrated that Br-Ell-SO3Na is a promising anticancer molecule attested by its noteworthy activity against the K562 tumor cell line and immunomodulatory activity in human PBMC cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5004-5004
Author(s):  
Yuliya Linhares ◽  
Jade Dardine ◽  
Siavash Kurdistani

Abstract Abstract 5004 Introduction: Amiloride is an FDA approved potassium-sparing diuretic which targets Na+/H+ exchanger isoform 1 (NHE1). NHE1 is responsible for the regulation of the intracellular pH, as well as cell-cycle and apoptosis. In supra-pharmacologic concentrations, amiloride non-specifically inhibits protein kinases. Recent study demonstrated that proapoptotic effect of amiloride in CML cell lines is linked to the modulation of the alternative splicing of Bcl-x, HIPK3, and BCR/ABL genes and is independent of pHi. Here, we demonstrate that pharmacologic doses of amiloride preferentially induce growth inhibition, cell cycle arrest and apoptosis in Flt3-ITD positive acute myeloid leukemia cell lines as compared to Bcr-Abl positive leukemia cell line. Our data suggests that amiloride may have an effect on Flt3 signaling and that its treatment potential for Flt3-ITD positive acute myeloid leukemia needs to be explored. Methods: MV4-11, MOLM13 and K562 cells lines in log-phase growth were used for the experiments. Analysis of the baseline Flt3 expression and phosphorylation status was assessed via Flt3 immunoprecipitation and Western blotting for Flt3 and phosphotyrosine. Cells were incubated with various amiloride concentrations; equal volume dilutions of DMSO were used for control. Cell counting and trypan blue exclusion viability was performed on TC10 Bio-Rad automated cell counter. The cell cycle analysis was performed applying propidium iodide staining. To assess for apoptosis and cell death, we used annexin V/PI staining kit and flow cytometry. Results: MOLM13 and MV4-11 cell lines carry activating Flt3-ITD mutation. We confirmed the expression and constituative activation of Flt3 in MOLM13 and MV4-11 cells with Western blotting. Flt3 protein was not detectable in K562 cell line. Amiloride at 0.025 mM and 0.05 mM completely inhibited the growth of MV4-11 cells after 24 hrs of treatment with no significant increase in total or live cell numbers at 72 hrs, but only mildly affected K562 cell proliferation. While the above amiloride concentrations caused cell death in MV4-11 and MOLM13 cell lines, there was no increased cell death in K562 cells. Incubation of MOLM13 and MV4-11 cell lines with 0.05 mM amiloride for 20 hrs induced cell cycle arrest. In MV4-11 cell line, the proportion of S phase cells after amiloride treatment was 15.4% (SD=5.4%) as compared to 31.3% (SD=1.4%) in control. MOLM13 cell line demonstrated 15.3% (SD=4.7%) of cells in S after amiloride treatment as compared to 35.3% (SD=2.4%) cells in S phase in control treatment. In K562 cell line, there was less effect with 52% (SD=4.2%) of cells in S phase in control as compared to 37% (SD=8.9%) in amiloride treatment. MV4-11 and MOLM 13 cell lines were more sensitive than K562 cells to amiloride induced apoptosis with 28.8% (control 12.7%) of MV4-11 cells, 11.4% (control 7.4%) of MOLM13 cells, and 11.4% (control 8.6%) of K562 cells being apoptotic after 20 hr treatment with 0.05mM amiloride. At 72 hrs of amiloride treatment 34% (control 1.5%) of MV4-11 cells, 17% (control 5%) of MOLM13 cells and 11% of K562 cells (control 8.9%) were apoptotic. Amiloride had similar effect on the number of dead cells with no increase in total cell death in K562 cell line. Upon treatment with increasing amiloride concentrations, there was dose-dependent increase in cell death and apoptosis in all three cell lines with K562 line showing relative resistance to amiloride. Discussion: Our results demonstrate that amiloride induces cell cycle arrest and inhibits proliferation of Flt3-ITD positive cell lines MV4-11 and MOLM13 as well as K562 cell line at a pharmacologic concentration of 0.05 mM. Both, cell cycle arrest and antiproliferative effect are more pronounced in Flt3-ITD positive cells lines while it is mild in Bcr-Abl positive K562 cell line. Pharmacologic doses of amiloride induce cell death and apoptosis in Flt3-ITD positive cell lines but not in K562 cell line. Both, Bcr-Abl and Flt3 signaling stimulates proliferation and inhibits apoptosis in myeloid leukemia cells. Our study suggests that amiloride may induce cell cycle arrest and apoptosis via modulating Flt3 signaling cascade. We are currently investigating the effects of amiloride on Flt3 phosphorylation. In conclusion, our data suggests that amiloride presents a potential treatment option for Flt3-ITD positive acute myeloid leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3661-3661
Author(s):  
Samuli Eldfors ◽  
Sumit Rai ◽  
Vineet Sharma ◽  
Angelique N Gilbert ◽  
Kimmo Porkka ◽  
...  

Abstract Background: Mutations in splicing factor gene SRSF2 are recurrent drivers in 5-15 % of patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). A key property of SRSF2 mutations is that they occur early in the pathogenesis of MDS and are therefore present in all tumor cells in a patient. This property makes targetable vulnerabilities caused by SRSF2 mutations exceptionally important as they provide a way to inhibit the whole tumor. We previously demonstrated that splicing factor mutations induce R-loop-dependent activation of ATR, rendering cells sensitive to ATR inhibition. R-loops are transcription intermediates consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. Accumulation of aberrant R-loops induces the ATR kinase, which activates the G2-M cell cycle checkpoint via CHK1- and WEE1-mediated signaling. In normal cells, activation of the G2-M checkpoint halts the cell cycle until R-loops have been resolved. When the ATR pathway is inhibited, checkpoint activation does not occur, causing cells with unresolved R-loops to proceed to mitosis, resulting in DNA damage and cell death. We, therefore, sought to assess primary human MDS/AML samples for sensitivity to perturbation of the ATR/CHK1/WEE1 pathway and identify mechanisms of resistance. Methods: Sensitivity of 147 AML patient samples to 515 oncology drugs was tested ex vivo. Bone marrow mononuclear cells were incubated with 5 concentrations of each drug for 72 h followed by measurement of cell viability by CTG assay. Somatic mutations were identified by exome sequencing of matched leukemic bone marrow and skin biopsy samples. Isogenic K562 cell line clones carrying SRSF2 P95H/L/R mutations were generated using CRISPR/Cas9 editing. The presence of SRSF2 mutation was confirmed by CRISPR-sequencing and expression by whole transcriptome RNA-sequencing. Drug sensitivity of the K562 clones with and without SRSF2 mutation was determined by incubating cells with 16 concentrations of prexasertib, SRA-737, adavosertib, or BAY-1895344, followed by determination of cell viability by the MTS assay. Results: Analysis of ex vivo drug sensitivities in AML patient samples identified vulnerability to CHK1 and WEE1 inhibition in SRSF2-mutated AML: SRSF2 mutation is associated with sensitivity to the CHK1 inhibitors prexasertib (p = 0.006) (Fig 1 A and B) and PF-00477736 (p = 0.002) and the WEE1 inhibitor adavosertib (p = 0.003). To establish whether the isogenic SRSF2-mutant K562 cell line models recapitulate known downstream aberrations associated with SRSF2 mutations in patients, we analyzed gene expression and splicing. SRSF2 contains an RNA binding domain with affinity to CCNG or GGNG exonic splicing enhancer sequences. Similar to what has been observed in patients, the K562 clones with SRSF2 mutation show reduced use of GGNG sequence motifs at skipped exons. These results demonstrate that isogenic K562 clones recapitulate known alterations caused by mutant SRSF2. To determine whether SRSF2 mutations induce sensitivity to inhibition of ATR, CHK1, and WEE1, we tested 10 isogenic SRSF2 mutant and 4 wild-type K562 clones. Cells with SRSF2 mutation show increased sensitivity to ATR/CHK1/WEE1 inhibition (Fig 1C). We found no significant difference in drug sensitivity between clones carrying SRSF2 P95H/L/R substitutions. Clones with higher SRSF2 mutant allele dosage are more sensitive (Fig 1D). We identified a subset of SRSF2 mutated AML samples that were resistant to CHK1 and WEE1 inhibition. All resistant AML have co-occurring RUNX1 mutations (Fig 1B). In AML, RUNX1 mutations are associated with therapy resistance, suggesting that these mutations contribute to drug resistance. To test whether RUNX1 mutations induce resistance to ATR/CHK1/WEE1 inhibition in SRSF2-mutant leukemia, we introduced RUNX1 loss-of-function mutations in isogenic K562 carrying SRSF2 mutations. Candidate resistance factors identified by ATAC and RNA-sequencing will be validated in functional assays. Conclusions: Our results indicate that SRSF2-mutated leukemia harbor a vulnerability to the inhibition of ATR, CHK1, and WEE1 kinases. Cell line models indicate that sensitivity is similar across mutant alleles and dependent on allelic copy number. Several ATR/CHK1 and WEE1 inhibitors are in development, and our results suggest that these compounds could be effective treatments for SRSF2-mutated MDS and AML. Figure 1 Figure 1. Disclosures Graubert: astrazeneca: Research Funding; Janssen: Research Funding; Calico: Research Funding.


2006 ◽  
Vol 51 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Andrés Delgado-Cañedo ◽  
Daniel Garcia dos Santos ◽  
José Artur Bogo Chies ◽  
Kátia Kvitko ◽  
Nance Beyer Nardi

2014 ◽  
Vol 67 ◽  
pp. 17-25 ◽  
Author(s):  
Ying Wang ◽  
Qingshuang Zhang ◽  
Junxia Zhao ◽  
Xiaojing Zhao ◽  
Jinxiu Zhang ◽  
...  

2020 ◽  
Vol 23 (10) ◽  
pp. 1064-1079
Author(s):  
Ahmet Alper Öztürk ◽  
İrem Namlı ◽  
Kadri Güleç ◽  
Şennur Görgülü

Aims: To prepare lamivudine (LAM)-loaded-nanoparticles (NPs) that can be used in lung cancer treatment. To change the antiviral indication of LAM to anticancer. Background: The development of anticancer drugs is a difficult process. One approach to accelerate the availability of drugs is to reclassify drugs approved for other conditions as anticancer. The most common route of administration of anticancer drugs is intravenous injection. Oral administration of anticancer drugs may considerably change current treatment modalities of chemotherapy and improve the life quality of cancer patients. There is also a potentially significant economic advantage. Objective: To characterize the LAM-loaded-NPs and examine the anticancer activity. Methods: LAM-loaded-NPs were prepared using Nano Spray-Dryer. Properties of NPs were elucidated by particle size (PS), polydispersity index (PDI), zeta potential (ZP), SEM, encapsulation efficiency (EE%), dissolution, release kinetics, DSC and FT-IR. Then, the anticancer activity of all NPs was examined. Results: The PS values of the LAM-loaded-NPs were between 373 and 486 nm. All NPs prepared have spherical structure and positive ZP. EE% was in a range of 61-79%. NPs showed prolonged release and the release kinetics fitted to the Weibull model. NPs structures were clarified by DSC and FT-IR analysis. The results showed that the properties of NPs were directly related to the drug:polymer ratio of feed solution. NPs have potential anticancer properties against A549 cell line at low concentrations and non-toxic to CCD 19-Lu cell line. Conclusion: NPs have potential anticancer properties against human lung adenocarcinoma cells and may induce cell death effectively and be a potent modality to treat this type of cancer. These experiments also indicate that our formulations are non-toxic to normal cells. It is clear that this study would bring a new perspective to cancer therapy.


2019 ◽  
Vol 19 (13) ◽  
pp. 1075-1091 ◽  
Author(s):  
Karla Mirella Roque Marques ◽  
Maria Rodrigues do Desterro ◽  
Sandrine Maria de Arruda ◽  
Luiz Nascimento de Araújo Neto ◽  
Maria do Carmo Alves de Lima ◽  
...  

Background: Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. Objective: Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. Methods: Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). Results: Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. Conclusion: Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.


Sign in / Sign up

Export Citation Format

Share Document