Oxaloacetate Mediates Mitochondrial Metabolism and Function

2020 ◽  
Vol 7 (1) ◽  
pp. 11-23
Author(s):  
Liping Yu ◽  
William I. Sivitz

Oxaloacetate, an intermediate in the tricarboxylic acid cycle, plays important roles in regulating mitochondrial function, gluconeogenesis, the urea cycle, and amino acid syntheses. Because this compound is not stable, more information is needed about its stability profile before its medicinal potential can be realized. In this short review, we present current knowledge and understanding of oxaloacetate with a focus on its stability, degradation, quantification methods, regulation of mitochondrial function, and potential therapeutic benefits. Further, we report previously unpublished spectral data related to the stability profile of oxaloacetate. We found that oxaloacetate has a half-life of about 14 hours in biological aqueous solution at 25°C before degrading into pyruvate. This mandates careful attention to handling this compound including storage at -20 to -80°C when not in use to prolong its shelf-life. Also, the oxaloacetate stability profile needs to be taken into account when conducting experiments involving the compound either in clinical trials or evaluating it as a health supplement or for other experiments. Measuring oxaloacetate by mass-spectrometry requires cumbersome derivatization to assure stability. However, we found that NMR can be used to detect oxaloacetate quantitatively without the need for making derivatives, and the NMR method is sensitive enough to detect oxaloacetate in the micromolar range. Using this method, we showed that oxaloacetate regulates mitochondrial complex II-driven respiration by potent inhibition of succinate dehydrogenase. Moreover, a growing literature in the past few years suggests that oxaloacetate may have therapeutic benefits in treating a variety of diseases.

2020 ◽  
Vol 11 ◽  
Author(s):  
Jie Li ◽  
Jianqiu Zou ◽  
Rodney Littlejohn ◽  
Jinbao Liu ◽  
Huabo Su

Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.


2020 ◽  
Vol 19 (06) ◽  
pp. 2041001
Author(s):  
Tugba G. Kucukkal ◽  
Rijul U. Amin

Rett Syndrome is a rare genetic disorder exclusively seen in girls. Approximately 95% of RTT cases is caused by mutations in the MeCP2 gene which codes for Methyl-CpG-binding protein 2 (MeCP2). In this review, first, a brief introductory review of Rett Syndrome, MeCP2 protein structure and function, mutation types and frequencies, and phenotype–genotype relationships were provided. After that, the current knowledge on the wild-type and mutant MeCP2 protein structure and dynamics as well as its binding to DNA is reviewed. The review particularly focuses on computational (such as molecular dynamics) and experimental (such as electrophoretic mobility shift assays) studies on the MeCP2 binding to different types of DNA as well as the computational and experimental (such as circular dichroism) studies on the stability changes upon mutations. In the end, a brief opinion on future outlook for further computational studies is provided.


2018 ◽  
Vol 52 (1) ◽  
pp. 89-107 ◽  
Author(s):  
Luis Aragón

Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.


2020 ◽  
Vol 21 (18) ◽  
pp. 6648
Author(s):  
Dobrochna Dolicka ◽  
Cyril Sobolewski ◽  
Marta Correia de Sousa ◽  
Monika Gjorgjieva ◽  
Michelangelo Foti

AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3’-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


2020 ◽  
Vol 17 ◽  
Author(s):  
Shuyuan Li ◽  
Yue Tang ◽  
Yushun Dou

Background: Exosomes, one of the extracellular vesicles, are widely present in all biological fluids and play an important role in intercellular communication. Because of its hydrophobic lipid bilayer and aqueous hydrophilic core structure, it is considered a possible alternative to liposome drug delivery systems. Not only do they protect the cargo like liposomes during delivery, they are less toxic and better tolerated. However, due to the lack of sources and methods for obtaining enough exosomes, the therapeutic application of exosomes as drug carriers is limited. Methods: A literature search was performed using the ScienceDirect and PubMed electronic databases to obtain information from published literature on milk exosomes related to drug delivery. Results: Here, we briefly reviewed the current knowledge of exosomes, expounded the advantages of milk-derived exosomes over other delivery vectors, including a higher yield, the oral delivery characteristic and additional therapeutic benefits. The purification and drug loading methods of milk exosomes, and the current application of milk exosomes were also introduced. Conclusion: The emergence of milk-derived exosomes is expected to break through the limitations of exosomes as therapeutic carriers of drugs. We hope to raise awareness of the therapeutic potential of milk-derived exosomes as a new drug delivery system.


2020 ◽  
Vol 19 (2) ◽  
pp. 176-192
Author(s):  
Samantha Bedell ◽  
Janine Hutson ◽  
Barbra de Vrijer ◽  
Genevieve Eastabrook

: Obesity and gestational diabetes mellitus (GDM) are becoming more common among pregnant women worldwide and are individually associated with a number of placenta-mediated obstetric complications, including preeclampsia, macrosomia, intrauterine growth restriction and stillbirth. The placenta serves several functions throughout pregnancy and is the main exchange site for the transfer of nutrients and gas from mother to fetus. In pregnancies complicated by maternal obesity or GDM, the placenta is exposed to environmental changes, such as increased inflammation and oxidative stress, dyslipidemia, and altered hormone levels. These changes can affect placental development and function and lead to abnormal fetal growth and development as well as metabolic and cardiovascular abnormalities in the offspring. This review aims to summarize current knowledge on the effects of obesity and GDM on placental development and function. Understanding these processes is key in developing therapeutic interventions with the goal of mitigating these effects and preventing future cardiovascular and metabolic pathology in subsequent generations.


The Oxford Handbook of the Auditory Brainstem provides an in-depth reference to the organization and function of ascending and descending auditory pathways in the mammalian brainstem. Individual chapters are organized along the auditory pathway, beginning with the cochlea and ending with the auditory midbrain. Each chapter provides an introduction to the respective area and summarizes our current knowledge before discussing the disputes and challenges that the field currently faces.The handbook emphasizes the numerous forms of plasticity that are increasingly observed in many areas of the auditory brainstem. Several chapters focus on neuronal modulation of function and plasticity on the synaptic, neuronal, and circuit level, especially during development, aging, and following peripheral hearing loss. In addition, the book addresses the role of trauma-induced maladaptive plasticity with respect to its contribution in generating central hearing dysfunction, such as hyperacusis and tinnitus.The book is intended for students and postdoctoral fellows starting in the auditory field and for researchers of related fields who wish to get an authoritative and up-to-date summary of the current state of auditory brainstem research. For clinical practitioners in audiology, otolaryngology, and neurology, the book is a valuable resource of information about the neuronal mechanisms that are currently discussed as major candidates for the generation of central hearing dysfunction.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hai Huang ◽  
Bin-Fei Zhang ◽  
Ping Liu ◽  
Hong-Li Deng ◽  
Peng-Fei Wang ◽  
...  

Abstract Background It is difficult to judge the stability of lateral compression type-1 (LC-1) pelvic fracture, as it is often based on static images of the pelvis. Compared with the traditional experience strategy, ultrasonography examination may be able to distinguish operative and conservative patients before definitive treatment. However, in previous studies, we have not compared the outcomes between traditional experience strategy (TES group) and combined ultrasonography examination (CUE group). Thus, the aim of the study is comparing the differences between TES and CUE strategy, to identify the value of ultrasonography examination. Methods Medical records system for patients with LC-1 pelvic fractures who were treated with TES and CUE strategy were included. Patients’ baseline characteristics, treatment strategy, and function were recorded at follow-up. Functional outcomes were evaluated using the Majeed grading system. Results In total, 77 patients with LC-1 pelvic fractures were included in the study. There were 42 and 35 patients in TES and CUE group, respectively. Compared to TES group (69 %), there were less proportion patients chosen the operative treatment in CUE group (43 %, P = 0.021). The volume of intraoperative blood loss in CUE operative group was more than TES operative group (P = 0.037). There were more patients with complete sacral fracture in CUE operative group than TES operative group (P = 0.002). The Majeed scores in CUE conservative group was higher than TES conservative group (P = 0.008). The overall Majeed scores in CUE group was higher than that in TES group (P = 0.039). Conclusions The ultrasonography examination could relatively accurately identify the unstable LC-1 pelvis than the traditional experience strategy, the operative rate could be reduced and the overall function of LC-1 patients could be improved under the ultrasonography examination. Level of evidence Level III.


Sign in / Sign up

Export Citation Format

Share Document