Electronic properties and Pseudo-Electromagnetic Fields of Highly Conjugated Carbon Nanostructures

2021 ◽  
Vol 14 ◽  
Author(s):  
A. Guillermo Bracamonte ◽  
W. Hutchinson

: In this communication we discuss the particular electronic and quantum properties from graphene and carbon allotropes to highly conjugated carbon chemical structures from recent research. Moreover, the chemical modifications of these types of materials were analyzed against the concept of their inert properties, thus identifying their surfaces could be modified to join different properties, functionalities, and couple electronic effects, among others. Their versatility was shown based on simple chemical reactions in controlled and targeted conditions of synthesis. Variable designs could be tuned from proof of concepts to functional materials for targeted applications. In addition, it was discussed a proof of concept for Electron Transfer (ET) applications to show their electronic properties. Finally, it was analyzed the use from highly conjugated chemical structures to higher hierarchical ordered carbon structures, carbon nanotubes, graphene and carbon allotropes in electron, and opto-responsive metamaterials. Thus, new insights into multi-modal characteristics of materials were discussed.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2547
Author(s):  
Hyeonwoo Kim ◽  
Suwon Hwang ◽  
Taeseung Hwang ◽  
Jung Bin In ◽  
Junyeob Yeo

Here, we demonstrate the fabrication of a flexible and transparent micro-supercapacitor (MSC), using colorless polyimide (CPI) via a direct laser writing carbonization (DLWC) process. The focused laser beam directly carbonizes the CPI substrate and generates a porous carbon structure on the surface of the CPI substrate. Fluorine, which is one of the chemical compositions of CPI, can enhance the specific area and the conductivity of the carbon electrode by creating micropores in carbon structures during carbonization. Thus, the fabricated carbonized CPI-based MSC shows enhanced specific capacitance (1.20 mF at 10 mV s−1) and better transmittance (44.9%) compared to the conventional PI-based MSC. Additionally, the fabricated carbonized CPI-based MSC shows excellent cyclic performance with minimal reduction (<~10%) in 3000 cycles and high capacitance retention under mechanical bending test conditions. Due to its high flexibility, transparency, and capacitance, we expect that carbonized CPI-based MSC can be further applied to various flexible and transparent applications.


2017 ◽  
Vol 95 (19) ◽  
Author(s):  
Francisco Iago Lira Passos ◽  
José Gadelha da Silva Filho ◽  
Aldilene Saraiva-Souza ◽  
Antônio Gomes Souza Filho ◽  
Vincent Meunier ◽  
...  

2021 ◽  
Author(s):  
Harry Geddes ◽  
Henry D. Hutchinson ◽  
Alex R Ha ◽  
Nicholas P. Funnell ◽  
Andrew Goodwin

<div> <div> <div> <p>Using a non-negative matrix factorisation (NMF) approach, we show how the pair distribution function (PDF) of complex mixtures can be deconvolved into the contributions from the individual phase components and also the interface between phases. Our focus is on the model system Fe||Fe3O4. We establish proof-of-concept using idealised PDF data generated from established theory-driven models of the Fe||Fe3O4 interface. Using X-ray PDF measurements for corroded Fe samples, and employing our newly-developed NMF analysis, we extract the experimental interface PDF (‘iPDF’) for this same system. We find excellent agreement between theory and experiment. The implications of our results in the broader context of interface characterisation for complex functional materials are discussed. </p> </div> </div> </div>


The Analyst ◽  
2014 ◽  
Vol 139 (9) ◽  
pp. 2114-2117 ◽  
Author(s):  
Xiulan He ◽  
Li Zhang ◽  
Hetong Qi ◽  
Ping Yu ◽  
Junjie Fei ◽  
...  

We have demonstrated a new strategy to improve the fluorescence detection limit by enhancing the energy transfer efficiency between carbon structures and fluorescent dyes using polyimidazolium-functionalized carbon nanostructures as a low background signal platform.


2021 ◽  
Vol 43 (1) ◽  
pp. 67-67
Author(s):  
Qiang Yang Qiang Yang ◽  
Wei Gong Wei Gong ◽  
Xiaowei Cui Xiaowei Cui ◽  
Chunsheng Zhou Chunsheng Zhou

The cellulose paper-based functional materials modified by Zn-NDI and Cu-NDI were prepared by the coating method. The chemical structures were characterized by FTIR, XRD, UV-vis and SEM, and the photochromic properties of the composite functional materials were studied. The results showed that Zn-NDI and Cu-NDI were successfully prepared and retained on the surface of copy paper, the wavelength of photochromic reaction is between 300-400 nm of MOFs materials. Optical analysis confirmed that the NDI/paper, Zn-NDI/paper and Cu-NDI/paper changed from tan to wheat, light green to olive, and dark tan to brown after 60 seconds of exposure to hernia light irradiations, the MOFs coated paper returned to its original color when it was placed in the dark for 4 hours. The above results indicated that the prepared Zn-NDI and Cu-NDI coated paper composites exhibited excellent photochromic ability and had potential applications in the field of anti-counterfeiting packaging materials.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5450
Author(s):  
Wan Pyo Hong ◽  
Inji Shin ◽  
Hee Nam Lim

It is known that 2-quinolones are broadly applicable chemical structures in medicinal and agrochemical research as well as various functional materials. A number of current publications about their synthesis and their applications emphasize the importance of these small molecules. The early synthetic chemistry originated from the same principle of the classical Friedländer and Knorr procedures for the preparation of quinolines. The analogous processes were developed by applying new synthetic tools such as novel catalysts, the microwave irradiation method, etc., whereas recent innovations in new bond forming reactions have allowed for novel strategies to construct the core structures of 2-quinolones beyond the bond disconnections based on two classical reactions. Over the last few decades, some reviews on structure-based, catalyst-based, and bioactivity-based studies have been released. In this focused review, we extensively surveyed recent examples of one-pot reactions, particularly in view of modular approaches. Thus, the contents are categorized as three major sections (two-, three-, and four-component reactions) according to the number of reagents that ultimately compose atoms of the core structures of 2-quinolones. The collected synthetic methods are discussed from the perspectives of strategy, efficiency, selectivity, and reaction mechanism.


CrystEngComm ◽  
2020 ◽  
Vol 22 (20) ◽  
pp. 3531-3538
Author(s):  
Ken Niwa ◽  
Tomoya Inagaki ◽  
Tetsu Ohsuna ◽  
Zheng Liu ◽  
Takuya Sasaki ◽  
...  

Sn3N4 polymorphs were synthesized via high-pressure nitridation of tin by means of laser-heated diamond anvil cell technique. This implies new insight into the crystal chemistry and functional materials of group IVA nitrides.


2015 ◽  
Vol 1726 ◽  
Author(s):  
Patrizia Minutolo ◽  
Mario Commodo ◽  
Gianluigi De Falco ◽  
Rosanna Larciprete ◽  
Andrea D'Anna

ABSTRACTIn this work we produce atomically thin carbon nanostructures which have a disk-like shape when deposited on a substrate. These nanostructures have intermediate characteristics between a graphene island and a molecular compound and have the potentiality to be used either as they are, or to become building blocks for functional materials or to be manipulated and engineered into composite layered structures.The carbon nanostructures are produced in a premixed ethylene/air flame with a slight excess of fuel with respect to the stoichiometric value. The size distribution of the produced compounds in aerosol phase has been measured on line by means of a differential mobility analyzer (DMA) and topographic images of the structures deposited on mica disks were obtained by Atomic Force Microscopy. Raman spectroscopy and XPS have been used to characterize their structure and the electronic and optical properties were obtained combining on-line photoionization measurements with Cyclic Voltammetry, light absorption and photoluminescence.When deposited on the mica substrate the carbon compounds assume the shape of an atomically thin disk with in plane diameter of about 20 nm. Carbon nano-disks consist of a network of small aromatic island with in plane length, La, of about 1 nm. Raman spectra evidence a significant amount of disorder which is in a large part due to the quantum confinement in the aromatic islands. Nano-disks contain small percentage of sp3 and the O/C ratio is lower than 6%. They furthermore present interesting UV and visible photoluminescence properties.


Sign in / Sign up

Export Citation Format

Share Document