scholarly journals Method for Calculating the Shape of Rolls for Helical Rolling

2022 ◽  
Author(s):  
S. Gorbatyuk

Abstract. The paper is devoted to solving the problem of determining the shape of the rolls of helical rolling mills, depending on the specified profile of the deformation zone. A universal calculation method has been proposed, thanks to which it is possible to determine the shape of the working surface of a roll for all types of helical rolling mills (with mushroom-shaped, cup-shaped, barrel-shaped and disc rolls), any relative arrangement of the rolling axis and rolls axes, and various locations of the deformation zone on the rolling axis. The proposed method is implemented as a standalone exe-application with a simple intuitive interface. The application allows you to output the calculation results into txt-files, which can then be imported into CAD systems to create 3D roll models.

2014 ◽  
Vol 698 ◽  
pp. 466-471
Author(s):  
Oleg V. Panchenko ◽  
Alexey M. Levchenko ◽  
Victor A. Karkhin

Specimens of various sizes are used to determine hydrogen content in deposited metals in such standards as ISO 3690, AWS A 4.3, and GOST 23338 while measuring methods are the same. It causes problems in comparison of experimental results and brings up the following question: what kind of specimen size is optimal to determine hydrogen content? An optimal specimen size was estimated using a calculation method. Experimental and calculation results obtained by using specimens with estimated dimensions were compared to the results obtained by using the specimen with dimensions of 100*25*8 mm to determine hydrogen content in a deposited metal.


Author(s):  
Kimihiro Toh ◽  
Shunsuke Maeda ◽  
Takao Yoshikawa

In order to obtain the non-linear average stress-average strain relationships (σ-ε curves) of damaged structural members under both tensile and compressive loads, the systematical calculations are performed using the non-linear FE analysis (FEA) code, LS-DYNA, and the idealized σ-ε curves of damaged structural members are estimated from FEA results. In addition, by introducing the idealized σ-ε curves of damaged structural members to the simplified calculation program, which is developed by authors and based on the Smith’s method, the residual ultimate strength of damaged hull structures is calculated. The residual ultimate strength of damaged hull structures is also calculated utilizing FEA, the calculation results by the simplified calculation program are compared with the results obtained from FE analyses so as to examine the accuracy of simplified calculation method.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1358-1362
Author(s):  
Jin Sheng Han ◽  
Hao Ran Liu ◽  
Shu Ping Cong

The fire resistance of concrete filled steel tubular column is usually obtained by the numerical analysis method, which is difficult to operate and not convenient in the actual civil engineering. So it is necessary to study the simplified calculation method. A large number of numerical simulation results of the temperature distribution of the section and the bearing capacity at high temperature of the concrete filled steel tubular columns are analyzed. The influences of secondary parameters are simplified. The simplified calculation method at 150 min and 180 min for the bearing capacity at high temperature of concrete filled steel tubular columns subjected to axial compression and fire is presented on the basis of comprehensive analysis of the numerical calculation results. The calculation results can be used as the basis to judge the fire resistance. It is shown by the comparison with the experimental results that the precision of the simplified calculation method can meet the requirements of engineering application.


2016 ◽  
Vol 846 ◽  
pp. 506-511
Author(s):  
Chong Fang Sun ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu

New-type floor is composed of three kinds of slabs joined together through fittings. It is a kind of anisotropic two-way slab. In order to study the calculation method of natural frequency, series method, variable thickness method and variable stiffness method are adopted to calculate the natural frequency. The calculation results of three methods are compared with test result and numerical simulation result. The conclusion is that the calculation result of the variable stiffness method is the closest to the real natural frequency of new-type floor.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hailong Cui ◽  
Huan Xia ◽  
Dajiang Lei ◽  
Xinjiang Zhang ◽  
Zhengyi Jiang

In this paper, a calculation method based on matlab partial differential equations (PDE) tool is proposed to investigate the static characteristics of aerostatic spherical bearings. The Reynolds equation of aerostatic spherical bearings is transformed into a standard elliptic equation. The effects of geometric parameters and operational conditions on the film pressure, bearing film force, and stiffness are studied. The axial and radial eccentricities result in different film pressure distributions; the bearing film force and stiffness are significantly influenced by geometric parameters and operational conditions. The relative optimal parameters are confirmed based on the calculation results. A comparison between the numerical and experimental results is also presented. The highest relative error between the numerical results and the experimental data is 11.3%; the calculation results show good agreements with the experimental data, thus verifying the accuracy of the calculation method used in this paper.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 35 ◽  
Author(s):  
Zbigniew Pater ◽  
Janusz Tomczak ◽  
Łukasz Wójcik ◽  
Tomasz Bulzak

The objective of the article was to present the state of the problem of physical modelling of the hot-working processes with plasticine as the model material. It was stated that the aforementioned method can prove helpful in analyzing complex plastic forming processes such as cross rolling and helical rolling of balls. In order to confirm this hypothesis, an attempt at forming steel balls with diameters of 40 mm (cross rolling) and 57 mm (helical rolling) under laboratory conditions was made. Further on, these processes were conducted in model form using special model rolling mills and 3D printed acrylonitrile butadiene styrene (ABS) tools. The comparison of the test results regarding shape and manufacturing accuracy, as well as force parameters, confirmed the validity of using physical modelling in the investigation of the process of cross rolling and helical rolling of balls.


Author(s):  
Katsuhiro Kikuchi ◽  
Satoru Ozawa ◽  
Yuhei Noguchi ◽  
Shinya Mashimo ◽  
Takanobu Igawa

Predicting the aerodynamic phenomena in a train-tunnel system is important for increasing the speed of railway trains. Among these phenomena, many studies have focused on the effects of pressure; however, only a few studies have examined the effects of flow velocity. When designing train roof equipment such as a pantograph and an aerodynamic braking unit, it is necessary to estimate the flow velocity while considering the influence of the boundary layer developed on the train roof. Until now, numerical simulations using a one-dimensional model have been utilized to predict the flow velocity around a train traveling through a tunnel; however, the influence of the boundary layer cannot be taken into consideration in these simulations. For this purpose, the authors have previously proposed a simple calculation method based on a steady incompressible tunnel flow model that can take into account the influence of the boundary layer, but this method could not incorporate the unsteadiness of the flow velocity. Therefore, in this study, the authors extend the previous simple calculation method such that it can be used for an unsteady incompressible tunnel flow. The authors compare the calculation results obtained from the extended method with the results of a model experiment and a field test to confirm its effectiveness.


2019 ◽  
Vol 7 (8) ◽  
pp. 257
Author(s):  
Xueyuan Zhu ◽  
Qinglong Hao ◽  
Jie Zhang

Anchor penetration is an important issue involved in the study of submarine pipeline damage accidents. To explore the penetration of a ship’s anchor under certain conditions, this study investigated the motion and force of an anchor and formulated a calculation method for the bottoming speed of an anchor. Meanwhile, the depth of anchor penetration was calculated under different conditions according to bottoming speed through programming. Finally, the reliability of the calculation method for the penetration depth was verified by comparing the actual measurement and the numerical simulation. On the basis of the findings, the calculation results were further analyzed, and conclusions were derived regarding the relationship between anchor mass, the horizontal projected area of the anchor, the anchor height on the water surface, and water depth. The conclusions provide suggestions for the application of anchor penetration in terms of seabed depth with certain reference values.


2012 ◽  
Vol 166-169 ◽  
pp. 610-615
Author(s):  
Yong Yang ◽  
Kang An ◽  
Su Sheng Zeng ◽  
Jian Yang Xue

Based on the experiment results of five plain steel plate-light weight concrete hollow deck specimens, the design methods of the composite decks which mainly including the calculation method of the bearing capacity and calculation method of the flexural rigidity were introduced. In the paper, the bearing capacity and flexural rigidity of the composite at two orthogonal directions, which including the direction parallel to the pipes and the direction perpendicular to the pipes, were both introduced. The calculation results of the bearing capacity and middle-span deflection were in good agreement with those of the experimental results, and in the return calculation methods were verified. Therefore, the design methods and calculation methods were useful to the design of this new type composite deck.


2020 ◽  
Vol 15 (4) ◽  
pp. 550-554 ◽  
Author(s):  
Yang Li ◽  
Lei Zhang

Abstract The analysis of carbon footprint plays an important role in the management of tourism scenic spots. This paper first introduced the calculation method of carbon footprint and ecological efficiency value of tourism scenic spots, then analyzed the general situation of tourism scenic spots in Jiangsu province and collected the data of 2013–17 to calculate the carbon footprint and ecological efficiency value. The results showed that the carbon footprint of tourism scenic spots in Jiangsu province was increasing year by year, of which the traffic carbon footprint accounted for the largest proportion, 60%. The value of ecological benefits of accommodation was the largest, followed by catering, activities and transportation, and accommodation created the highest economic benefits. According to the calculation results, some suggestions were put forward for the ecological efficiency management of tourism scenic spots in Jiangsu province, which is conducive to the better development of tourism scenic spots.


Sign in / Sign up

Export Citation Format

Share Document