Properties according to Alkali Activator Mixing Ratio of Non-cement Composite

2011 ◽  
Vol 488-489 ◽  
pp. 411-414
Author(s):  
Si Hwan Kim ◽  
Gum Sung Ryu ◽  
Kyung Taek Koh ◽  
Su Tae Kang ◽  
Jang Hwa Lee

This Study purposed to review on the strength of geopolymer mortar and the change in liquidity depending on the mixing ratio of alkali-activator in developing the geopolymer mortar using bottom ash as binder. Alkali-activator was used through mixing 9M-Sodium hydroxide (SH) and 3 kinds of Sodium sillicate(SS) and its strength was measured by material age after curing for 48 hours at 60°C. As a result, the pressure strength was shown as 40MP when the mass ratios of 9M-Sodium hydroxide and 3 kinds of Sodium sillicate were35 vs. 65 and 50 vs. 50, but the solution of the mass ratio of 50 vs. 50 showed the rapid solid phenomenon in the process of mortar manufacturing, thereby disadvantage in construction. In addition, in case of storing the mixed solution in room temperature, as the mix ratio of 9M-Sodium hydroxide increases, the solution solidified. Accordingly, when considering on strength, liquidity and storage, it’s most preferable to fix the mass ratio of 9M-Sodium hydroxide and 3 kinds of Sodium sillicate at 35 vs. 65.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengnian Wang ◽  
Jun Su ◽  
Zhijian Wu ◽  
Wei Ma ◽  
Yue Li ◽  
...  

Geopolymer binders are adjudged as the latest wave of sustainable alkali-activated materials for soil stabilization due to their excellent bonding properties. This study applied metakaolin as a precursor for synthesizing the geopolymer binder by employing the mixture of quicklime and sodium bicarbonate as an alkali activator. The optimal mass mixing ratio of the alkali activator, metakaolin, and silty clay was determined by unconfined compression tests. The stabilization mechanisms of the geopolymer binder were measured by x-ray diffraction and Fourier transform infrared spectroscopy. The microstructural characteristics of the geopolymer-stabilized silty clay were observed by scanning electron microscopy with an energy dispersive x-ray spectroscopy and mercury intrusion porosimetry test for understanding the strengthening mechanism of the silty clay after the treatment. Results indicate that the optimal mass mixing ratio of the alkali activator, metakaolin, and silty clay is 1:2:17, and the unconfined compressive strength of the geopolymer-stabilized silty clay reaches the maximum value of 0.85 MPa with adding 15 wt% of the geopolymer binder. Diffraction patterns show an insufficient polymerization of the geopolymer binder in the silty clay in the early days but a rapid synthesis of aluminosilicate gels after that. The new asymmetrical stretching vibration peaks signified the formation of aluminosilicate networks and are responsible for the strength improvement of the silty clay. Microstructural analyses further confirm the formation of aluminosilicate gels and their positive impacts on the structure of the silty clay over curing age.


2017 ◽  
Vol 68 (10) ◽  
pp. 2367-2372 ◽  
Author(s):  
Ng Hooi Jun ◽  
Mirabela Georgiana Minciuna ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Tan Soo Jin ◽  
Andrei Victor Sandu ◽  
...  

Manufacturing of Portland cement consists of high volume of natural aggregates which depleted rapidly in today construction field. New substitutable material such as bottom ash replace and target for comparable properties with hydraulic or pozzolanic properties as Portland cement. This study investigates the replacement of different sizes of bottom ash into Portland cement by reducing the content of Portland cement and examined the mechanism between bottom ash (BA) and Portland cement. A cement composite developed by 10% replacement with 1, 7, 14, and 28 days of curing and exhibited excellent mechanical strength on day 28 (34.23 MPa) with 63 mm BA. The porous structure of BA results in lower density as the fineness particles size contains high specific surface area and consume high quantity of water. The morphology, mineralogical, and ternary phase analysis showed that pozzolanic reaction of bottom ash does not alter but complements and integrates the cement hydration process which facilitate effectively the potential of bottom ash to act as construction material.


1988 ◽  
Vol 20 (8-9) ◽  
pp. 11-17 ◽  
Author(s):  
T. Ito ◽  
T. Okumura ◽  
M. Yamamoto

The study of the relations between the senses of smell and taste and odorant concentration is important for the solution of odor problems. The threshold concentrations of odor and taste (TOC, TTC) of 2-methylisoborneol (MIB) and geosmin were measured by the non-forced choice triangle method using 12-20 panelists. Both TOC and TTC were found to be functions of water temperature and the concentration of residual chlorine. The TOC and TTC of mixed samples were rather lower than the concentrations calculated from the mixing ratio. The sensitivities of the consumer panel and the number of musty odor complaints from consumers are related to MIB or geosmin concentration. The ratio of the number of complaints to MIB (or geosmin) concentration decreased after maximum complaint, but the sensitivity of the consumer panel remained the same.


2018 ◽  
Vol 75 (11) ◽  
pp. 4031-4047 ◽  
Author(s):  
Yign Noh ◽  
Donggun Oh ◽  
Fabian Hoffmann ◽  
Siegfried Raasch

Abstract Cloud microphysics parameterizations for shallow cumulus clouds are analyzed based on Lagrangian cloud model (LCM) data, focusing on autoconversion and accretion. The autoconversion and accretion rates, A and C, respectively, are calculated directly by capturing the moment of the conversion of individual Lagrangian droplets from cloud droplets to raindrops, and it results in the reproduction of the formulas of A and C for the first time. Comparison with various parameterizations reveals the closest agreement with Tripoli and Cotton, such as and , where and are the mixing ratio and the number concentration of cloud droplets, is the mixing ratio of raindrops, is the threshold volume radius, and H is the Heaviside function. Furthermore, it is found that increases linearly with the dissipation rate and the standard deviation of radius and that decreases rapidly with while disappearing at > 3.5 μm. The LCM also reveals that and increase with time during the period of autoconversion, which helps to suppress the early precipitation by reducing A with smaller and larger in the initial stage. Finally, is found to be affected by the accumulated collisional growth, which determines the drop size distribution.


Sign in / Sign up

Export Citation Format

Share Document