scholarly journals Новая отражающая линза для ионного зеркала планарного многоотражательного времяпролетного масс-спектрометра

2019 ◽  
Vol 89 (8) ◽  
pp. 1265
Author(s):  
В.П. Глащенко ◽  
М.А. Маркушин

The article examines a reflecting lens of a planar ion mirror, formed by a channel, adjoining by normal upon the closing lid of the mirror. The wide flange of the channel and the mirror lid have different potentials, are plane-parallel and are on a small distance between each other. A precise analytical expression for the calculation of the field of the reflecting lens has been found using the method of conformal mapping. It is demonstrated that in the ion mirror with the proposed reflecting lens it is possible to adjust the pre-calculated field distribution to approach the theoretically ideal space-time focusing in a wide range of ion energies.

Author(s):  
Song-tong Han ◽  
Bo Zhang ◽  
Xiao-li Rong ◽  
Lei-xiang Bian ◽  
Guo-kai Zhang ◽  
...  

The ellipsoidal magnetization model has a wide range of application scenarios. For example, in aviation magnetic field prospecting, mineral prospecting, seabed prospecting, and UXO (unexploded ordnance) detection. However, because the existing ellipsoid magnetization formula is relatively complicated, the detection model is usually replaced by a dipole. Such a model increases the error probability and poses a significant challenge for subsequent imaging and pattern recognition. Based on the distribution of ellipsoid gravity potential and magnetic potential, the magnetic anomaly field distribution equation generated by the ellipsoid is deduced by changing the aspect ratio, making the ellipsoid equivalent to a sphere. The result of formula derivation shows that the two magnetic anomaly fields are consistent. This paper uses COMSOL finite element software to model UXO, ellipsoids, and spheres and analyzes magnetic anomalies. The conclusion shows that the ellipsoid model can completely replace the UXO model when the error range of 1nT is satisfied. Finally, we established two sets of ellipsoids and calculated the magnetic anomalous field distributions on different planes using deduction formulas and finite element software. We compared the experimental results and found that the relative error of the two sets of data was within [Formula: see text]‰. Error analysis found that the error distribution is standardized and conforms to the normal distribution. The above mathematical analysis and finite element simulation prove that the calculation method is simple and reliable and provides a magnetic field distribution equation for subsequent UXO inversion.


2018 ◽  
Vol 18 (16) ◽  
pp. 12105-12121 ◽  
Author(s):  
Thomas Fauchez ◽  
Steven Platnick ◽  
Tamás Várnai ◽  
Kerry Meyer ◽  
Céline Cornet ◽  
...  

Abstract. In a context of global climate change, the understanding of the radiative role of clouds is crucial. On average, ice clouds such as cirrus have a significant positive radiative effect, but under some conditions the effect may be negative. However, many uncertainties remain regarding the role of ice clouds on Earth's radiative budget and in a changing climate. Global satellite observations are particularly well suited to monitoring clouds, retrieving their characteristics and inferring their radiative impact. To retrieve ice cloud properties (optical thickness and ice crystal effective size), current operational algorithms assume that each pixel of the observed scene is plane-parallel and homogeneous, and that there is no radiative connection between neighboring pixels. Yet these retrieval assumptions are far from accurate, as real radiative transfer is 3-D. This leads to the plane-parallel and homogeneous bias (PPHB) plus the independent pixel approximation bias (IPAB), which impacts both the estimation of top-of-the-atmosphere (TOA) radiation and the retrievals. An important factor that determines the impact of these assumptions is the sensor spatial resolution. High-spatial-resolution pixels can better represent cloud variability (low PPHB), but the radiative path through the cloud can involve many pixels (high IPAB). In contrast, low-spatial-resolution pixels poorly represent the cloud variability (high PPHB), but the radiation is better contained within the pixel field of view (low IPAB). In addition, the solar and viewing geometry (as well as cloud optical properties) can modulate the magnitude of the PPHB and IPAB. In this, Part II of our study, we simulate TOA 0.86 and 2.13 µm solar reflectances over a cirrus uncinus scene produced by the 3DCLOUD model. Then, 3-D radiative transfer simulations are performed with the 3DMCPOL code at spatial resolutions ranging from 50 m to 10 km, for 12 viewing geometries and nine solar geometries. It is found that, for simulated nadir observations taken at resolution higher than 2.5 km, horizontal radiation transport (HRT) dominates biases between 3-D and 1-D reflectance calculations, but these biases are mitigated by the side illumination and shadowing effects for off-zenith solar geometries. At resolutions coarser than 2.5 km, PPHB dominates. For off-nadir observations at resolutions higher than 2.5 km, the effect that we call THEAB (tilted and homogeneous extinction approximation bias) due to the oblique line of sight passing through many cloud columns contributes to a large increase of the reflectances, but 3-D radiative effects such as shadowing and side illumination for oblique Sun are also important. At resolutions coarser than 2.5 km, the PPHB is again the dominant effect. The magnitude and resolution dependence of PPHB and IPAB is very different for visible, near-infrared and shortwave infrared channels compared with the thermal infrared channels discussed in Part I of this study. The contrast of 3-D radiative effects between solar and thermal infrared channels may be a significant issue for retrieval techniques that simultaneously use radiative measurements across a wide range of solar reflectance and infrared wavelengths.


2021 ◽  
Author(s):  
Auguste Gires ◽  
Ioulia Tchiguirinskaia ◽  
Daniel Schertzer

<p>Universal Multifractals have been widely used to characterize and simulate geophysical fields extremely variable over a wide range of scales such as rainfall. Despite strong limitations, notably its non-stationnarity, discrete cascades are often used to simulate such fields. Recently, blunt cascades have been introduced in 1D and 2D to cope with this issue while remaining in the simple framework of discrete cascades. It basically consists in geometrically interpolating over moving windows the multiplicative increments at each cascade steps.</p><p> </p><p>In this paper, we first suggest an extension of this blunt cascades to space-time processes. Multifractal expected behaviour is theoretically established and numerically confirmed. In a second step, a methodology to address the common issue of guessing the missing half of a field is developed using this framework. It basically consists in reconstructing the increments of the known portion of the field, and then stochastically simulating the ones for the new portion, while ensuring the blunting the increments on the portion joining the two parts of the fields. The approach is tested with time series, maps and in a space-time framework. Initial tests with rainfall data are presented.</p><p> </p><p>Authors acknowledge the RW-Turb project (supported by the French National Research Agency - ANR-19-CE05-0022), for partial financial support.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sergio Jiménez-Gambín ◽  
Noé Jiménez ◽  
José M. Benlloch ◽  
Francisco Camarena

AbstractWe report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses.


1991 ◽  
Vol 244 ◽  
Author(s):  
P. Moretti ◽  
P. Thevenard ◽  
K. Wirl ◽  
P. Hertel

ABSTRACTOptical planar waveguides, with a controllable thickness in a very wide range, typically from 3 to 20 μm, can be fabricated by thermally controlled proton implantation in LiNbO3. In the nuclear stopping region at the end of the ion's tracks a sufficient decrease in refractive index is obtained, thus forming an adequate optical barrier. The mode confinement was investigated by dark line mode spectroscopy, and the refractive index profiles were reconstructed. The effects of different ion fluences and ion energies in the Mev range on the refractive index profile at 300 K have been investigated.


2003 ◽  
Vol 125 (5) ◽  
pp. 795-803 ◽  
Author(s):  
S. Generalis ◽  
M. Nagata

The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.


1997 ◽  
Vol 11 (14) ◽  
pp. 1743-1752
Author(s):  
D. M. Ćirić ◽  
B. S. Tošić

The space-time dependence of temperature is analysed in the case of out of doors fire. It is assumed that the fire is caused by a series of point heat sources. The analytical expression of temperature has been found and the line of maximum temperatures, depending on the wind velocity, has been investigated.


Author(s):  
Stefano Tibaldi ◽  
Franco Molteni

The atmospheric circulation in the mid-latitudes of both hemispheres is usually dominated by westerly winds and by planetary-scale and shorter-scale synoptic waves, moving mostly from west to east. A remarkable and frequent exception to this “usual” behavior is atmospheric blocking. Blocking occurs when the usual zonal flow is hindered by the establishment of a large-amplitude, quasi-stationary, high-pressure meridional circulation structure which “blocks” the flow of the westerlies and the progression of the atmospheric waves and disturbances embedded in them. Such blocking structures can have lifetimes varying from a few days to several weeks in the most extreme cases. Their presence can strongly affect the weather of large portions of the mid-latitudes, leading to the establishment of anomalous meteorological conditions. These can take the form of strong precipitation episodes or persistent anticyclonic regimes, leading in turn to floods, extreme cold spells, heat waves, or short-lived droughts. Even air quality can be strongly influenced by the establishment of atmospheric blocking, with episodes of high concentrations of low-level ozone in summer and of particulate matter and other air pollutants in winter, particularly in highly populated urban areas.Atmospheric blocking has the tendency to occur more often in winter and in certain longitudinal quadrants, notably the Euro-Atlantic and the Pacific sectors of the Northern Hemisphere. In the Southern Hemisphere, blocking episodes are generally less frequent, and the longitudinal localization is less pronounced than in the Northern Hemisphere.Blocking has aroused the interest of atmospheric scientists since the middle of the last century, with the pioneering observational works of Berggren, Bolin, Rossby, and Rex, and has become the subject of innumerable observational and theoretical studies. The purpose of such studies was originally to find a commonly accepted structural and phenomenological definition of atmospheric blocking. The investigations went on to study blocking climatology in terms of the geographical distribution of its frequency of occurrence and the associated seasonal and inter-annual variability. Well into the second half of the 20th century, a large number of theoretical dynamic works on blocking formation and maintenance started appearing in the literature. Such theoretical studies explored a wide range of possible dynamic mechanisms, including large-amplitude planetary-scale wave dynamics, including Rossby wave breaking, multiple equilibria circulation regimes, large-scale forcing of anticyclones by synoptic-scale eddies, finite-amplitude non-linear instability theory, and influence of sea surface temperature anomalies, to name but a few. However, to date no unique theoretical model of atmospheric blocking has been formulated that can account for all of its observational characteristics.When numerical, global short- and medium-range weather predictions started being produced operationally, and with the establishment, in the late 1970s and early 1980s, of the European Centre for Medium-Range Weather Forecasts, it quickly became of relevance to assess the capability of numerical models to predict blocking with the correct space-time characteristics (e.g., location, time of onset, life span, and decay). Early studies showed that models had difficulties in correctly representing blocking as well as in connection with their large systematic (mean) errors.Despite enormous improvements in the ability of numerical models to represent atmospheric dynamics, blocking remains a challenge for global weather prediction and climate simulation models. Such modeling deficiencies have negative consequences not only for our ability to represent the observed climate but also for the possibility of producing high-quality seasonal-to-decadal predictions. For such predictions, representing the correct space-time statistics of blocking occurrence is, especially for certain geographical areas, extremely important.


1968 ◽  
Vol 23 (12) ◽  
pp. 2084-2090 ◽  
Author(s):  
A. Ding ◽  
A. Henglein ◽  
D. Hyatt ◽  
K. Lacmann

The velocity spectra and cross sections of reactions of the type X*+D2 → XD++D (X+=Ar+, N2+, CO+) have been found to be independent of the temperature of the target gas ( — 190° to 20°C). The additional forward scattering (as compared to spectator stripping) of the product ion at high energies cannot be explained by the thermal motion of the D2 molecules. A recoil stripping mechanism is proposed. At low energies, an intermediate XD2* is postulated that lives shorter than half a period of rotation and is forward scattered but quickly equilibrates the excess energy among the vibrational degrees of freedom. The reactions of Ar+ and N2+ with CD4 can well be understood by the stripping model over a wide range of energy. At low energies, no preferential forward scattering of the product ion is found as in the corresponding reactions with D2. The strongly unsymmetric broadening of the product ion band together with a small shift to lower velocities indicate a strong interaction of the incident ion with the CD3 group at low energies. The formation of an intermediate complex XCD4+ which isotropically decays is expected at energies of a few tenth of one eV. Direct measurements at such low primary ion energies have not yet been possible.


Sign in / Sign up

Export Citation Format

Share Document