scholarly journals Биологические и реологические свойства коллагена, сшитого глутаровым альдегидом

2020 ◽  
Vol 90 (9) ◽  
pp. 1601
Author(s):  
Ю.А. Нащекина ◽  
О.А. Луконина ◽  
Д.М. Дарвиш ◽  
А.В. Нащекин ◽  
В.Ю. Елоховский ◽  
...  

The effect of the concentration of glutaraldehyde, which has the ability to crosslink collagen type I molecules, on its stability, mechanical strength, and cytotoxicity was studied. It is shown that under physiological conditions, collagen containing 10 and 18% glutaraldehyde possesses the greatest stability. The results of the rheological analysis showed that with a minimum concentration of glutaraldehyde (1%), the mechanical characteristics of collagen hydrogels are significantly improved. However, a concentration of glutaraldehyde above 10% reduces cell viability by 50%.

2012 ◽  
Vol 24 (03) ◽  
pp. 185-195 ◽  
Author(s):  
Ji Hye Hwang ◽  
On You Kim ◽  
A Ram Kim ◽  
Ji Yeon Bae ◽  
Su Mi Jeong ◽  
...  

Adult articular cartilage tissue has poor capability of self-repair. Therefore, a variety of tissue engineering approaches are motivated by the clinical need for articular repair. Alginate has been used as a biomaterial for cartilage regeneration. The alginate is a natural polymer that is extracted from seaweeds and purification. However, the main drawback is the immune rejection in vivo. To overcome this problem, we have developed the biocompability of alginate using modified Korbutt method. After alginate was purified, purified alginate microcapsules were used in cartilage regeneration. Chondrocytes were seeded in purified and nonpurified alginate microcapsules, and then cell viability, proliferation and phenotype were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Reverse transcriptase-polymerase chain reaction (RT-PCR) was conducted to confirm mRNA expression on collagen type I and collagen type II for chondrocytes phenotype. Hematoxylin and eosin (H&E) and Safranin-O histological staining showed tissue growth at the interface during the first 10 days. In this study, chondrocytes in purified alginate microcapsules had higher cell viability, proliferation and more phenotype expression than those in nonpurified alginate microcapsules. The results suggest that the purified alginate microcapsule is useful for cartilage regeneration.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 599
Author(s):  
Gustavo A. Rico-Llanos ◽  
Sara Borrego-González ◽  
Miguelangel Moncayo-Donoso ◽  
José Becerra ◽  
Rick Visser

Collagen type I is the main organic constituent of the bone extracellular matrix and has been used for decades as scaffolding material in bone tissue engineering approaches when autografts are not feasible. Polymeric collagen can be easily isolated from various animal sources and can be processed in a great number of ways to manufacture biomaterials in the form of sponges, particles, or hydrogels, among others, for different applications. Despite its great biocompatibility and osteoconductivity, collagen type I also has some drawbacks, such as its high biodegradability, low mechanical strength, and lack of osteoinductive activity. Therefore, many attempts have been made to improve the collagen type I-based implants for bone tissue engineering. This review aims to summarize the current status of collagen type I as a biomaterial for bone tissue engineering, as well as to highlight some of the main efforts that have been made recently towards designing and producing collagen implants to improve bone regeneration.


Cartilage ◽  
2020 ◽  
pp. 194760352091655
Author(s):  
Daniel Grande ◽  
Todd Goldstein ◽  
Thomas J. Turek ◽  
Susan Hennessy ◽  
Ann W. Walgenbach ◽  
...  

Objective Patients undergoing articular cartilage paste grafting have been shown in studies to have significant improvement in pain and function in long-term follow-ups. We hypothesized that ex vivo impacting of osteochondral autografts results in higher chondrocyte matrix production versus intact osteochondral autograft plugs. Design This institutional review board–approved study characterizes the effects of impacting osteochondral plugs harvested from the intercondylar notch of 16 patients into a paste, leaving one graft intact as a control. Cell viability/proliferation, collagen type I/II, SOX-9, and aggrecan gene expression via qRT-PCR (quantitative reverse transcription-polymerase chain reaction) were analyzed at 24 and 48 hours. Matrix production and cell morphology were evaluated using histology. Results Paste samples from patients (mean age 39.7) with moderate (19%) to severe (81%) cartilage lesions displayed 34% and 80% greater cell proliferation compared to plugs at 24 and 48 hours post processing, respectively ( P = 0.015 and P = 0.021). qRT-PCR analysis yielded a significant ( P = 0.000) increase of aggrecan, SOX-9, collagen type I and II at both 24 and 48 hours. Histological examination displayed cell division throughout paste samples, with accumulation of aggrecan around multiple chondrocyte lacunae. Conclusions Paste graft preparation resulted in increased mobility of chondrocytes by matrix disruption without loss of cell viability. The impaction procedure stimulated chondrocyte proliferation resulting in a cellular response to reestablish native extracellular matrix. Analysis of gene expression supports a regenerative process of cartilage tissue formation and contradicts long-held beliefs that impaction trauma leads to immediate cell death. This mechanism of action translates into clinical benefit for patients with moderate to severe cartilage damage.


Sign in / Sign up

Export Citation Format

Share Document