scholarly journals Плазмон-стимулированное фотолегирование в тонкослойной структуре As-=SUB=-2-=/SUB=-S-=SUB=-3-=/SUB=---Ag

2019 ◽  
Vol 127 (11) ◽  
pp. 865
Author(s):  
И.З. Индутный ◽  
В.И. Минько ◽  
Н.В. Сопинский ◽  
П.М. Литвин

Abstract The effect of the excitation of surface plasmon polaritons at the silver – chalcogenide glass interface on photostimulated diffusion of silver into the chalcogenide was studied for the first time. To excite plasmons, a high-frequency aluminum diffraction grating with a period of 248.5 nm was used, onto which a two-layer Ag–As2S3 structure was deposited. It was found that the process of photostimulated diffusion of silver into the chalcogenide layer is accelerated (that is, the photosensitivity of such a structure increases) when the surface plasmon polariton is excited at the Ag – As2S3 interface during the exposure. The dynamics of photostimulated changes in the optical characteristics of the structure, including the initial stage of the photodiffusion process, was registered by recording the changes in the plasmon excitation characteristics with the exposure time.

Author(s):  
Daisuke Hirashima ◽  
Katsunori Hanamura

Through interference of surface plasmon polaritons (SPPs), near-field radiation transfer between pillar-array-structured surfaces was enhanced compared with that between plane surfaces. Even in nanoscale channels between the pillars, the SPPs could propagate, and then a kind of interference and resonance took place according to the depth of the channel between the pillars. With decreasing pillar height, the frequency at maximum radiation transfer was shifted to the high-frequency side. That is, spectral control of near-field radiation could be achieved using pillar-array-structured surfaces.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 114
Author(s):  
Steve Kamau ◽  
Safaa Hassan ◽  
Khadijah Alnasser ◽  
Hualiang Zhang ◽  
Jingbiao Cui ◽  
...  

It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1333
Author(s):  
Leeju Singh ◽  
Nicolò Maccaferri ◽  
Denis Garoli ◽  
Yuri Gorodetski

The phenomenon of coupling between light and surface plasmon polaritons requires specific momentum matching conditions. In the case of a single scattering object on a metallic surface, such as a nanoparticle or a nanohole, the coupling between a broadband effect, i.e., scattering, and a discrete one, such as surface plasmon excitation, leads to Fano-like resonance lineshapes. The necessary phase matching requirements can be used to engineer the light–plasmon coupling and to achieve a directional plasmonic excitation. Here, we investigate this effect by using a chiral nanotip to excite surface plasmons with a strong spin-dependent azimuthal variation. This effect can be described by a Fano-like interference with a complex coupling factor that can be modified thanks to a symmetry breaking of the nanostructure.


2012 ◽  
Vol 190 ◽  
pp. 369-372 ◽  
Author(s):  
N.E. Khokhlov ◽  
V.I. Belotelov ◽  
A.N. Kalish ◽  
A.K. Zvezdin

t is shown that the inverse Faraday effect appears in the case of surface plasmon polariton propagation near a metal-paramagnetic interface. The inverse Faraday effect in nanostructured periodically perforated metaldielectric films increases because of the excitation of surface plasmon polaritons. In this case, a stationary magnetic field is amplified by more than an order of magnitude compared to the case of a smooth paramagnetic film. The distribution of an electromagnetic field is sensitive to the wavelength and the angle of incidence of light, which allows one to efficiently control the local magnetization arising due to the inverse Faraday effect.


2003 ◽  
Vol 797 ◽  
Author(s):  
Victor Coello ◽  
Thomas Søndergaard ◽  
Sergey I. Bozhevolnyi

ABSTRACTWe model the operation of a micro-optical interferometer for surface plasmon polaritons (SPPs) that comprises an SPP beam-splitter formed by equivalent scatterers lined up and equally spaced. The numerical calculations are carried out by using a vector dipolar model for multiple SPP scattering. The SPP beam-splitter is simulated for different angles of the incident SPP beam, radii of the particles, and inter-particle distances in order to find a suitable configuration for realization of a 3dB SPP beam-splitter. The results obtained are in good agreement with experimental data available in the literature. The feasibility of fabricating an interferometer is thereby corroborated and the calculated intensity maps are found rather similar to those experimentally reported.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3147 ◽  
Author(s):  
Zigmas Balevicius ◽  
Algirdas Baskys

The total internal reflection ellipsometry (TIRE) method was used for the excitation and study of the sensitivity features of surface plasmon polariton (SPP) and Bloch surface waves (BSWs) resonances. For the BSWs generation distributed Bragg gratings were formed on the tops of the substrates (BK7 glass substrate), which had six bilayers of ~120 nm SiO2 and ~40 nm TiO2 and 40 nm of TiO2 on the top. The SPP sample consisted of the BK7 glass prism and a gold layer (45 nm). Numerical calculations of the optical dispersions and the experimental TIRE data have shown that SPP resonance overtake the BSWs in wavelength scanning by a factor of about 17. However, for the ellipsometric parameters Ψ and Δ in the vicinity of excitations, the BSW sensitivity is comparable with SPP. The obtained resolutions were Δ S P P = 7.14 × 10 − 6 R I U , Ψ S P P = 1.7 × 10 − 5 R I U for the SPP and Δ B S W = 8.7 × 10 − 6 R I U , Ψ B S W = 2.7 × 10 − 5 R I U for the BSW. The capabilities of both surface excitations are discussed from the sensitivity point of view in the design of these advanced biosensors.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 89 ◽  
Author(s):  
Ming Cai ◽  
Shulong Wang ◽  
Bo Gao ◽  
Yindi Wang ◽  
Tao Han ◽  
...  

In this paper, a new electro-optical switch modulator based on the surface plasmon polaritons of graphene is proposed. An air–graphene-substrate–dielectric structure is adopted in the modulator. In this structure, the graphene is considered as a film of metal whose thickness tends to be infinitesimal. By changing the external voltage, the boundary conditions can be changed to decide whether the surface plasmon polariton waves can be excited in mid-infrared band. Because of this effect, the structure can be used as an electro–optical switch modulator, whose modulation depth is about 100% in theory. Finally, the 3 dB bandwidth (~34 GHz) and the energy loss (36.47 fJ/bit) of the electro–optical switch modulator are given, whose low energy loss is very suitable for engineering applications.


Nanoscale ◽  
2020 ◽  
Vol 12 (25) ◽  
pp. 13674-13679
Author(s):  
C. C. Li ◽  
P. Shi ◽  
L. P. Du ◽  
X. C. Yuan

An optical spin-resolved scanning imaging technique was proposed by which the normal to the interface spin component of surface plasmon polaritons can be mapped and the three-dimensional spin vector can be reconstructed with the experimental result.


2015 ◽  
Vol 15 (10) ◽  
pp. 7711-7716 ◽  
Author(s):  
Dong Hun Lee ◽  
Myung-Hyun Lee

We propose a gapped surface plasmon polariton waveguide (G-SPPW) device based on a liquid crystal (LC) at a wavelength of 1.55 μm. The G-SPPW device is composed of an input 2.0-μm-wide and 5.0-μm-long insulator-metal-insulator waveguide (IMI-W), an 8-μm-long gap, and an output 2.0-μm-wide and 25.0-μm-long IMI-W. The LC is used for the gap and the 5.15-μm-thick upper and lower dielectric layers. The input surface plasmon polaritons (SPPs) propagate and jump over the gap in the G-SPPW with a coupling loss of less than ∼0.68 dB. The propagation and coupling losses of the 38-μm-long G-SPPW device are varied in the range of ∼0.5268 dB to ∼2.6716 dB and ∼0.1446 dB to ∼0.6784 dB, respectively, with LC tilt angles (1, 2) = 0° ∼ 90° at a fixed 90° twist angle. The normalized transmission of the G-SPPW device is also varied in the range from −3.351 dB to −0.6714 dB with 1, 2 = 0° ∼ 90° at a fixed 90° twist angle. The output SPP characteristics of the G-SPPW device can be properly controlled by the orientation of the LC molecules. The proposed G-SPPW device shows potential for new active plasmonic device applications.


Sign in / Sign up

Export Citation Format

Share Document