Ethical considerations for monetizable big data in healthcare (Preprint)

2020 ◽  
Author(s):  
Eli M. Cahan ◽  
Tina Hernandez-Boussard ◽  
Sonoo Thadaney-Israni

UNSTRUCTURED Since Henrietta Lacks’ death from cervical cancer, so-called HeLa cells have become a ubiquitous substrate for scientific advancement. Such scientific advancement has bred innovation, and innovation, profit. Yet, these innovations have been unevenly distributed across demographic groups. To ensure the ethical conduct of research and the equitable distribution of its benefits, biospecimens, like HeLa’s tissue, were protected under consent conventions of the Belmont Report. Likewise, during the genomic era, the “biospecimen" concept was forced to evolve again. A third era—that of informatics—has the potential to empower truly “personalized” medicine. Nonetheless, issues related to unequal focus of research efforts and unequal provision of innovation already exist. Additionally, with increasing ease of re-identification, the anonymity of individualized data is at risk. Redesign of consent protocols and redefinition of the biospecimen concept may be required once more to protect the donors of de-identified transcriptomic data—and their families, in the long-run.

2019 ◽  
Vol 17 (5) ◽  
pp. 265-275
Author(s):  
Y. Peristiowati ◽  
Y. Puspitasari ◽  
Indasah

This study is aimed at analyzing the anticancer properties of papaya leaf extract, specifically the inhibition of cell proliferation and apoptotic induction through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53 pathways. Twenty-five mice (Mus musculus), aged 2 months and weighing 20–30 g, was injected with 0.5 mg dexamethasone for 7 days. The mice were then injected intracutaneously with 1 ml of HeLa cells (8 × 106 HeLa cells/microliter). The mice were divided into five groups (5 each): negative control (P1) (5% CMC-Na, sodium carboxymethyl cellulose), treatment II (225 mg/kg BW (body weight) papaya leaves methanol extract), treatment III (450 mg/kg BW), treatment IV (750 mg/kg BW), and treatment PV (2 mg alcohol anticancer drug). Papaya leaf extract treatments were applied for 2 weeks. Then, the tumor tissue was isolated for hematoxylin and eosin staining. Immunohistochemical imaging was used to detect Ki-67, caspase-3, NF-κB, and p53 expression. Further analysis was undertaken using the ImmunoRatio software program. The results indicated that administration of papaya leaf methanol extract significantly increased the expression of NF-κB and p53 at a dose of 450 mg/kg BW. Our results also showed that the mice treated with 450 mg of papaya leaf extract per kg of BW (P3) had the largest increase of caspase-3 expression compared to the negative control group. Papaya leaf ethanol extract decreased the cancer cell proliferation index and increased apoptosis of cancer cells in animal models of cervical cancer; it may also work to increase NF-kB expression and expression of the p53 gene.


2020 ◽  
Vol 20 (17) ◽  
pp. 2125-2135
Author(s):  
Ci Ren ◽  
Chun Gao ◽  
Xiaomin Li ◽  
Jinfeng Xiong ◽  
Hui Shen ◽  
...  

Background: Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. Objective: Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). Methods: SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. Results: Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. Conclusion: Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.


2021 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Matthew C. Wang ◽  
Phillip J. McCown ◽  
Grace E. Schiefelbein ◽  
Jessica A. Brown

Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.


AI & Society ◽  
2021 ◽  
Author(s):  
Antonio Carnevale ◽  
Emanuela A. Tangari ◽  
Andrea Iannone ◽  
Elena Sartini

2021 ◽  
pp. 1-27
Author(s):  
Nabil Mohie Abdel-Hamid ◽  
Moustafa Fathy ◽  
Chika Koike ◽  
Toshiko Yoshida ◽  
Motonori Okabe ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Delizhaer Reheman ◽  
Jing Zhao ◽  
Shan Guan ◽  
Guan-Cheng Xu ◽  
Yi-Jie Li ◽  
...  

Abstract Pyrazolone complexes have strong anti-tumor and antibacterial properties, but the anti-tumor mechanism of pyrazolone-based copper complexes has not been fully understood. In this study, the possible mechanism and the inhibitory effect of a novel pyrazolone-based derivative compound [Cu(PMPP-SAL)(EtOH)] on human cervical cancer cells (HeLa cells) was investigated. [Cu(PMPP-SAL)(EtOH)] effectively inhibited proliferation of HeLa cells in vitro with an IC50 value of 2.082 after treatment for 72 h. Cell cycle analysis showed apoptosis was induced by blocking the cell cycle in the S phase. [Cu(PMPP-SAL)(EtOH)] promoted the loss of mitochondrial membrane potential, release of cytochrome c, PARP cleavage, and activation of caspase-3/9 in HeLa cells. Additionally, [Cu(PMPP-SAL)(EtOH)] inhibited the PI3K/AKT pathway and activated the P38/MAPK, and JNK/MAPK pathways. [Cu(PMPP-SAL)(EtOH)] also inhibited the phosphorylation of Iκ-Bα in the NF-κB pathway activated by TNF-α, thus restricting the proliferation of HeLa cells which were activated by TNF-α. In conclusion, [Cu(PMPP-SAL)(EtOH)] inhibited the growth of HeLa cells and induced apoptosis possibly via the caspase-dependent mitochondria-mediated pathway. These results suggest that [Cu(PMPP-SAL)(EtOH)] can be a potential candidate for the treatment of cervical cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Wu ◽  
Xianjing Hu ◽  
Liyan Song ◽  
Jianhua Zhu ◽  
Rongmin Yu

Inflammation is known to be closely associated with the development of cancer. The study was launched in human cervical cancer HeLa cells to investigate the antitumor and anti-inflammatory effects of P2, a marine polypeptide fraction from an important fishery resourceArca subcrenata. The basic research showed that P2 could suppress the production of nitric oxide in LPS-induced RAW264.7 macrophage cells as well as the secretion of inflammatory cytokines IL-6 and TNF-αin human cervical cancer HeLa cells. For the molecular mechanisms, P2 was shown to downregulate the gene expression of proinflammatory cytokines IL-6 and IL-8 and to inhibit the COX-2 and iNOS-related pathways in HeLa cells. In consequence, P2 might inhibit tumor development by blocking the interaction between tumor microenvironment and proinflammatory mediators. All findings indicate that P2 possesses the potential to be developed as a novel agent for cancer therapy.


2021 ◽  
Vol 20 (1) ◽  
pp. 56-63
Author(s):  
Li Jiang ◽  
Zhi-Cheng Yao ◽  
Miao-Miao Liu ◽  
Run-Hui Ma ◽  
Kiran Thakur

Cervical cancer has always been the top malignant cancer among female cancers in the world. Due to its recurrence, metastasis rate, and drug resistance, the treatment results of cervical cancer have been unsatisfactory. Apigetrin is present in a variety of fruits and vegetables and has been reported to have antioxidant, free radical scavenging, anti-inflammatory, and anticancer activities. Therefore, this study focuses on the effect of apigetrin on the autophagy of cervical cancer HeLa cells based on the previous research. The results showed that apigetrin can enhance the autophagy fluorescence of light chain 3B (LC3B), and further combined with quantitative real-time PCR (qPCR) and Western blotting found that the expression of autophagy-related genes and proteins p-mTOR, Beclin1, and LC3B increased, while the expression of AMPK, ULK1, and p62 decreased. In addition, apigetrin also promoted the release of Ca2+, the PERK/eIF2α/ATF4/chop, and IRE1α pathways activate endoplasmic reticulum (ER) stress. The addition of 4PBA proved that ER stress promoted autophagy in HeLa cells. Finally, the addition of the 3-MA indicates the relationship between autophagy and apoptosis in HeLa cells. Our results indicate that apigetrin has a certain anticancer potential and can be used as a drug adjuvant and food additive for the prevention and treatment of cervical cancer.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Binita Nath ◽  
Asif Raza ◽  
Vishal Sethi ◽  
Amaresh Dalal ◽  
Siddhartha Sankar Ghosh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document