A CONSIDERATION ABOUT THE FLOOD CONTROL PLAN CONSIDERING DEFORMATION OF RIVER BED DURING LARGE SCALE FLOOD

Author(s):  
Kentaro AOKI ◽  
Masaharu FUJITA
Author(s):  
J. Schüz ◽  
A. Olsson

Cancer is increasing worldwide. Th e Russian Federation is no exception in this regard with an increase of the total number of new cases predicted to rise from 529,062 in 2018 to 587,622 in 2040. Th e present high burden and increase in incident cases at the same time increases the pressure on healthcare infrastructure and related costs. Th us, primary and secondary prevention of cancer becomes essential. Occupational cancers related to exposure at the workplace are among the preventable cancer burden, due to the modifi ability of the risk through minimisation of occupational exposures and adequate worker protection. For the Russian Federation, some 20,000 cancers each year may be att ributable to occupation, but systematic recording is currently lacking. As information is also lacking on the absolute eff ect of various occupational carcinogens in the Russian workforce due to lack of large-scale epidemiological studies and because for many suspected occupational carcinogens the evidence may become stronger, the true burden may in fact be higher. Th e Russian Federation appears particularly suitable for research into occupational cancer given the sizable workforce, the heavy industr ialisation as well as the good documentation and workplace surveillance over time, so that results are both informative for the situation in the Russian Federation and on a global scale. Five challenging but not unfeasible steps of nationwide population-based cancer registration, development of a legal framework for record linkage of registries and data collections, recording of occupational cancers, large scale epidemiological occupational cancer research and rigorous implementation of worker protection on known carcinogens, lead the way to a continuously updated cancer control plan that includes the elimination of occupational cancer in the Russian Federation.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 649 ◽  
Author(s):  
Quansen Wang ◽  
Jianzhong Zhou ◽  
Kangdi Huang ◽  
Ling Dai ◽  
Gang Zha ◽  
...  

The risk inevitably exists in the process of flood control operation and decision-making of reservoir group, due to the hydrologic and hydraulic uncertain factors. In this study different stochastic simulation methods were applied to simulate these uncertainties in multi-reservoir flood control operation, and the risk caused by different uncertainties was evaluated from the mean value, extreme value and discrete degree of reservoir occupied storage capacity under uncertain conditions. In order to solve the conflict between risk assessment indexes and evaluate the comprehensive risk of different reservoirs in flood control operation schemes, the subjective weight and objective weight were used to construct the comprehensive risk assessment index, and the improved Mahalanobis distance TOPSIS method was used to select the optimal flood control operation scheme. The proposed method was applied to the flood control operation system in the mainstream and its tributaries of upper reaches of the Yangtze River basin, and 14 cascade reservoirs were selected as a case study. The results indicate that proposed method can evaluate the risk of multi-reservoir flood control operation from all perspectives and provide a new method for multi-criteria decision-making of reservoir flood control operation, and it breaks the limitation of the traditional risk analysis method which only evaluated by risk rate and cannot evaluate the risk of the multi-reservoir flood control operation system.


2013 ◽  
Vol 17 (9) ◽  
pp. 3605-3622 ◽  
Author(s):  
N. Voisin ◽  
H. Li ◽  
D. Ward ◽  
M. Huang ◽  
M. Wigmosta ◽  
...  

Abstract. Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities and predictors (withdrawals vs. consumptive demands, as well as natural vs. regulated mean flow) for configuring operating rules. Overall the best performing implementation is with combined priorities rules (flood control storage targets and irrigation release targets) set up with mean annual natural flow and mean monthly withdrawals. The options of not accounting for groundwater withdrawals, or on the contrary, of assuming that all remaining demand is met through groundwater extractions, are discussed.


2020 ◽  
Author(s):  
Shaokun He ◽  
Shenglian Guo ◽  
Chong-Yu Xu ◽  
Kebing Chen ◽  
Zhen Liao ◽  
...  

Abstract. Joint and optimal impoundment operation of the large-scale reservoir system has become more crucial for modern water management. Since the existing techniques fail to optimize the large-scale multi-objective impoundment operation due to the complex inflow stochasticity and high dimensionality, we develop a novel combination of parameter simulation optimization and classification-aggregation-decomposition approach here to overcome these obstacles. There are four main steps involved in our proposed framework: (1) reservoirs classification based on geographical location and flood prevention targets; (2) assumption of a hypothetical single reservoir in the same pool; (3) the derivation of the initial impoundment policies by the non-dominated sorting genetic algorithm-II (NSGA-II); (4) further improvement of the impoundment policies via Parallel Progressive Optimization Algorithm (PPOA). The framework potential is performed on China's mixed 30-reservoir system in the upper Yangtze River. Results indicate that our method can provide a series of schemes to refer to different flood event scenarios. The best scheme outperforms the conventional operating rule, as it increases impoundment efficiency from 89.50 % to 94.16 % and hydropower generation by 7.70 billion kWh (or increase 3.79 %) while flood control risk is less than 0.06.


2013 ◽  
Vol 2 (1) ◽  
pp. 78-100 ◽  
Author(s):  
Hassan Bevrani ◽  
Mehrdad Gholami ◽  
Neda Hajimohammadi

Economical harvesting of electrical energy on a large scale considering the environmental issues is a challenge. As a solution, Microgrids (MGs) promise to facilitate the widely penetration of renewable energy sources (RESs) and energy storage devices into the power systems, reduce system losses and greenhouse gas emissions, and increase the reliability of the electricity supply to the customers. Although the concept of MG is already established, the control strategies and energy management systems for MGs which cover power interchange, system stability, frequency and voltage regulation, active and reactive power control, islanding detection, grid synchronization, following contingencies and emergency conditions are still under development. Like a conventional power system, a Micro-grid (MG) needs emergency control and protection schemes to have secure and stable operation. Since MG can operate in both grid-connected and islanded mode, in addition to the control loops and protection schemes, extra issues must be considered. Transition between two operation modes requires an extra control plan to eliminate and stabilize transients due to mode changing. This paper presents an overview of the key issues and new challenges on emergency control and protection plans in the MG systems. The most important emergency control and protection schemes such as load shedding methods that have been presented over the past years are summarized.


2019 ◽  
Vol 11 (14) ◽  
pp. 3818
Author(s):  
Jun Qiu ◽  
Tie-Jian Li ◽  
Fang-Fang Li

Large-scale reservoirs have played a significant role in meeting various water demands and socio-economic development, while they also lead to undeniable impacts on the environment and ecology. The Longyangxia reservoir located on the Yellow River is the first large-scale reservoir on the upper Yellow River with a control area of 18% of the entire Yellow River Basin. Since it was put into operation in 1987, it has made great contributions to the national economy for over 30 years. In this study, the socio-economic benefits of the Longyangxia reservoir in power generation, water supply, flood control, and ice prevention are investigated. More importantly, its impacts on the ecology and environment are also presented and analyzed, such as the impacts on river morphology, flow regimes, peak flow, fish, phytoplankton, and zooplankton. It can be concluded that the construction of the Longyangxia reservoir contributes greatly to socio-economic benefits, the water area nearby has formed a new ecological environment, and the trophic level of the aquatic environment has probably increased.


2018 ◽  
Vol 40 ◽  
pp. 05010
Author(s):  
Brian Perry ◽  
Colin Rennie ◽  
Andrew Cornett ◽  
Paul Knox

Due to excessive rainfall in June of 2013, several rivers located in and near the City of Calgary, Canada experienced significant flooding events. These events caused severe damage to infrastructure throughout the city, precipitating a renewed interest in flood control and mitigation strategies for the area. A major potential strategy involves partial diversion of Elbow River flood water to the proposed Springbank Off-Stream Storage Reservoir. A large scale physical model study was conducted to optimize and validate the design of a portion of the new project. The goals of the physical model were to investigate diversion system behaviors such as flow rates, water levels, sediment transport and, debris accumulation, and optimize the design of new flow control structures to be constructed on the Elbow River. In order to accurately represent the behavior of debris within the system due to flooding, large woody debris created from natural sources was utilized in the physical model and its performance was compared to that of debris of the same size fabricated from pressed cylindrical wood dowels. In addition to comparing the performance of these two debris types, the impact of root wads on debris damming was also investigated. Significant differences in damming behavior was shown to exist between the natural debris and the fabricated debris, while the impact of root wad on damming affected the dam structure and formation. The results of this experiment indicate that natural debris is preferred for studies involving debris accumulation.


2005 ◽  
Vol 49 ◽  
pp. 457-462 ◽  
Author(s):  
Taichi TEBAKARI ◽  
Kazuhiko FUKAMI ◽  
Chanchai SUVANPIMOL ◽  
Mamoru MIYAMOTO ◽  
Tadashi YAMADA

2018 ◽  
Vol 246 ◽  
pp. 01019
Author(s):  
Tao Li ◽  
Jun-hua Zhang ◽  
Guoming Gao ◽  
Huaibao Ma

Sandbar development would stop the water and sediment exchange between main river and tributary and even influence the normal reservoir opeartion. From the surveyed data of reservoir built many years ago, it shows that when there is a bar in tributary mouth, the tributary volume below the bar will become nullification during the period of flood control or water and sediment regulation of reservoir. There are more tributaries in Xiaolangdi reservoir than the others that it occupies 41.3% of the total initial volume of tributary volume. Obviously, the effective use of tributary volume has been important influenced by comprehensive utilization efficiency of reservoir scheduling, such as flood control, sedimentation reduction and comprehensive utilization. Results of Xiaolangdi Reservoir mobile-bed physical model experiments show that tributary is equivalent to lateral extension of river bed, the tributary intrusion deposition process have strongly relations with the factors, such as original topography, river bed deposition shape and its regime, process with input discharge and input sediment, and method of reservoir regulation. The variation trends of main river and tributary terrain forecasted by model test are basically in accordance with field surveyed data. The results could be used for research, design, and forecasting of reservoirs in sediment-laden river.


Sign in / Sign up

Export Citation Format

Share Document