APPLICABILITY OF FAILURE MODES AND A YEILD SURFACE BEARING CAPACITY FOR A BREAKWATER SUBJECTED TO TSUNAMI

Author(s):  
Naonori KUWABARA ◽  
Kenichi MAEDA ◽  
Tatsuya MATSUDA
2021 ◽  
Vol 28 (1) ◽  
pp. 139-152
Author(s):  
Teng Huang ◽  
Dongdong Zhang ◽  
Yaxin Huang ◽  
Chengfei Fan ◽  
Yuan Lin ◽  
...  

Abstract In this study, the flexural bearing capacity and failure mechanism of carbon fiber-reinforced aluminum laminate (CARALL) beams with a double-channel cross-section and a 3/2 laminated configuration were experimentally and numerically studied. Two types of specimens using different carbon fiber layup configurations ([0°/90°/0°]3 and [45°/0°/−45°]3) were fabricated using the pressure molding thermal curing forming process. The double-channel CARALL beams were subjected to static three-point bending tests to determine their failure behaviors in terms of ultimate bearing capacity and failure modes. Owing to the shortcomings of the two-dimensional Hashin failure criterion, the user-defined FORTRAN subroutine VUMAT suitable for the ABAQUS/Explicit solver and an analysis algorithm were established to obtain a progressive damage prediction of the CFRP layer using the three-dimensional Hashin failure criterion. Various failure behaviors and mechanisms of the CARALL beams were numerically analyzed. The results indicated that the numerical simulation was consistent with the experimental results for the ultimate bearing capacity and final failure modes, and the failure process of the double-channel CARALL beams could be revealed. The ultimate failure modes of both types of double-channel CARALL beams were local buckling deformation at the intersection of the upper flange and web near the concentrated loading position, which was mainly caused by the delamination failure among different unidirectional plates, tension and compression failure of the matrix, and shear failure of the fiber layers. The ability of each fiber layer to resist damage decreased in the order of 90° fiber layer > 0° fiber layer > 45° fiber layer. Thus, it is suggested that 90°, 0°, and 45° fiber layers should be stacked for double-channel CARALL beams.


2013 ◽  
Vol 66 (4) ◽  
pp. 431-438
Author(s):  
Augusto Ottoni Bueno da Silva ◽  
Newton de Oliveira Pinto Júnior ◽  
João Alberto Venegas Requena

The aim of this study was to evaluate through analytical calculation, two-dimensional elastic modeling, and three-dimensional plastic modeling, the bearing capacity and failure modes of composite hollow trusses bi-supported with a 15 meter span, varying the number of central Vierendeel panels. The study found the proportion span/3 - span/3 - span/3, as the ideal relationship for the truss - Vierendeel - truss lengths, because by increasing the proportion of the length occupied by the central Vierendeel panels, the new system loses stiffness and no longer supports the load stipulated in the project. Furthermore, they can start presenting excessive vertical displacements and insufficient resistance to external shear forces acting on the panels.


2008 ◽  
Vol 400-402 ◽  
pp. 513-518 ◽  
Author(s):  
Yong Chang Guo ◽  
Pei Yan Huang ◽  
Yang Yang ◽  
Li Juan Li

The improvement of the load carrying capacity of concrete columns under a triaxial compressive stress results from the strain restriction. Under a triaxial stress state, the capacity of the deformation of concrete is greatly decreased with the increase of the side compression. Therefore, confining the deformation in the lateral orientation is an effective way to improve the strength and ductility of concrete columns. This paper carried out an experimental investigation on axially loaded normal strength concrete columns confined by 10 different types of materials, including steel tube, glass fiber confined steel tube (GFRP), PVC tube, carbon fiber confined PVC tube (CFRP), glass fiber confined PVC tube (GFRP), CFRP, GFRP, polyethylene (PE), PE hybrid CFRP and PE hybrid GFRP. The deformation, macroscopical deformation characters, failure mechanism and failure modes are studied in this paper. The ultimate bearing capacity of these 10 types of confined concrete columns and the influences of the confining materials on the ultimate bearing capacity are obtained. The advantages and disadvantages of these 10 types of confining methods are compared.


2012 ◽  
Vol 174-177 ◽  
pp. 2170-2175
Author(s):  
Rong Jun Zhao ◽  
Jun Zhen Zhang ◽  
Hai Bin Zhou ◽  
Ben Hua Fei

In this study, Larix gemilinii and metal plate were selected as the main materials. According to GB5005-2003, the connection properties of tension-splice joint and larch wood were investigated. The results showed that the elastic modulus of Larix gemilinii was not affected by the performance parameters of tension-splice joint greatly and three kinds of failure modes were introduced. Besides the design value for the ultimate bearing capacity of Larix gemilinii and the design value for the ultimate tensile bearing capacity of the metal plates were determined. A conservative calculation method for ductility ratio of metal plates was proposed. The ductility ratio of the metal plate connected joint changed with the construction modes, and the ductility ratio for metal plate parallel to the grain (more than 2.4) was obviously bigger than that of perpendicular to the grain, which complies with the requirements for ductility ratio in anti-seismic structure.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xianglong Liu ◽  
Jicheng Zhang ◽  
Hailin Lu ◽  
Ning Guan ◽  
Jiahao Xiao ◽  
...  

The mechanical properties of T-shaped concrete-filled steel tubular (TCFST) short columns under axial compression after elevated temperature are investigated in this paper. A total of 30 TCFST short columns with different temperature (T), steel ratio (α), and duration of heating (t) were tested. The TCFST column was directly fabricated by welding two rectangular steel tubes together. The study mainly investigated the failure modes, the ultimate bearing capacity, the load-displacement, and the load-strain performance of the TCFST short columns. Experimental results indicate that the rectangular steel tubes of the TCFST column have deformation consistency, and the failure mode consists of local crack, drum damage, and shear failure. Additionally, the influence of high temperature on the residual bearing capacity of the TCFST is significant, e.g., a higher temperature can downgrade the ultimate bearing capacity. Finally, a finite element model (FEM) is developed to simulate the performance of the TCFST short columns under elevated temperature, and the results agree with experimental values well. Overall, this investigation can provide some guidance for future studies on damage assessment and reinforcement of the TCFST columns.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liuqun Zhao ◽  
Li Zheng ◽  
Hui Qin ◽  
Tiesuo Geng ◽  
Yonggang Tan ◽  
...  

Concrete three-point bending beams with preexisting cracks are widely used to study the growth process of I-II mixed mode cracks. Studying the failure characteristics of preexisting cracks at different locations on concrete three-point bending beams not only has important scientific significance but also has a wide range of engineering application backgrounds in the safety assessment of engineering structures. In this paper, through several numerical experiments, the influence of preexisting cracks at different positions on the failure characteristics of concrete three-point bending beams is studied, and three typical failure modes are obtained. The failure process of the specimens with three typical failure modes is discussed in detail, and it is pointed out that the crack failure mode is tensile failure. The change trends of bearing capacity, acoustic emission quantity, and acoustic emission energy of three typical failure modes are analyzed. The maximum bearing capacity, the maximum acoustic emission quantity, and energy of three failure modes of concrete three-point bending beams generally show an increasing trend.


2011 ◽  
Vol 255-260 ◽  
pp. 728-732
Author(s):  
Qing Chun ◽  
Jian Wu Pan

Based on the experiment of timber rectangle beams made of pine and fir reinforced with CFRP/AFRP hybrid FRP (HFRP) sheets. The failure modes and bending bearing capacity and load-deflection curves and strain distribution at mid-span section were analyzed. The results showed that: Comparing with the specimens without being reinforced by HFRP, there is certain improvement in bending bearing capacity and stiffness of the specimens reinforced with HFRP respectively. Bending bearing capacity of the pine specimens improve 18.1%~62.0% and bending bearing capacity of the fir specimens improve 7.7%~29.7%. Stiffness of the pine specimens improve 13%~21%, and stiffness of the fir specimens improve 6%~10%. Based on the experimental data, the computing formulas of bending bearing capacity of timber rectangle beams made of pine and fir reinforced with HFRP were presented.


2017 ◽  
Vol 12 (5) ◽  
pp. 1089-1103 ◽  
Author(s):  
Haizuo Zhou ◽  
Yu Diao ◽  
Gang Zheng ◽  
Jie Han ◽  
Rui Jia

2020 ◽  
Vol 993 ◽  
pp. 1190-1195
Author(s):  
Shang Yu Yang ◽  
Jian Jun Wang ◽  
Jia Wen Han ◽  
Hang Wang ◽  
Li Hong Han

Casing radial deformation during complex fracturing process was seriously for shale gas wells in Sichuan district of China, and the average casing deformation rate in the region is of 50%. The bridge plug, perforating gun and other tools cannot successfully pass with deformed casing. Aiming at the 3-D logging morphology for deformed casing of shale gas wells, the failure modes and mechanisms were analyzed by using elasticity and theoretical mechanics. Many factors were evaluated and integrated to achieve quantitative evaluation model including geology feature, wellbore trajectory, cement property, casing material and hydrofracture process. With the aid of the self-developed unconventional oil and gas well casing simulation test equipment, the casing bearing capacity with shear load were carried out, established the relationship between shear load value and radial deformation, and further constructed the casing failure criterion with shear force. This work can provide technical support for casing design and selection in shale gas wells.


Sign in / Sign up

Export Citation Format

Share Document