scholarly journals AN ATEMPT OF FIELD MEASUREMENTS OF SURFACE FLOW ON A RIVER BY USING A HELICOPTER AIDED IMAGE VELOCIMETRY

2002 ◽  
Vol 46 ◽  
pp. 809-814 ◽  
Author(s):  
Kohsei TAKEHARA ◽  
Ichiro FUJITA ◽  
Yasuhide TAKANO ◽  
Goji T. ETOH ◽  
Shiro AYA ◽  
...  
2021 ◽  
Vol 3 ◽  
Author(s):  
Carl J. Legleiter ◽  
Paul J. Kinzel

Conventional, field-based streamflow monitoring in remote, inaccessible locations such as Alaska poses logistical challenges. Safety concerns, financial considerations, and a desire to expand water-observing networks make remote sensing an appealing alternative means of collecting hydrologic data. In an ongoing effort to develop non-contact methods for measuring river discharge, we evaluated the potential to estimate surface flow velocities from satellite video of a large, sediment-laden river in Alaska via particle image velocimetry (PIV). In this setting, naturally occurring sediment boil vortices produced distinct water surface features that could be tracked from frame to frame as they were advected by the flow, obviating the need to introduce artificial tracer particles. In this study, we refined an end-to-end workflow that involved stabilization and geo-referencing, image preprocessing, PIV analysis with an ensemble correlation algorithm, and post-processing of PIV output to filter outliers and scale and geo-reference velocity vectors. Applying these procedures to image sequences extracted from satellite video allowed us to produce high resolution surface velocity fields; field measurements of depth-averaged flow velocity were used to assess accuracy. Our results confirmed the importance of preprocessing images to enhance contrast and indicated that lower frame rates (e.g., 0.25 Hz) lead to more reliable velocity estimates because longer capture intervals allow more time for water surface features to translate several pixels between frames, given the relatively coarse spatial resolution of the satellite data. Although agreement between PIV-derived velocity estimates and field measurements was weak (R2 = 0.39) on a point-by-point basis, correspondence improved when the PIV output was aggregated to the cross-sectional scale. For example, the correspondence between cross-sectional maximum velocities inferred via remote sensing and measured in the field was much stronger (R2 = 0.76), suggesting that satellite video could play a role in measuring river discharge. Examining correlation matrices produced as an intermediate output of the PIV algorithm yielded insight on the interactions between image frame rate and sensor spatial resolution, which must be considered in tandem. Although further research and technological development are needed, measuring surface flow velocities from satellite video could become a viable tool for streamflow monitoring in certain fluvial environments.


2001 ◽  
Vol 21 (2Supplement) ◽  
pp. 61-62
Author(s):  
Ichiro FUJITA ◽  
Shiro AYA ◽  
Masahiro TAMAI ◽  
Kohsei TAKEHARA ◽  
Hitoshi MIYAMOTO ◽  
...  

Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

Author(s):  
Christopher Pagano ◽  
Flavia Tauro ◽  
Salvatore Grimaldi ◽  
Maurizio Porfiri

Large scale particle image velocimetry (LSPIV) is a nonintrusive environmental monitoring methodology that allows for continuous characterization of surface flows in natural catchments. Despite its promise, the implementation of LSPIV in natural environments is limited to areas accessible to human operators. In this work, we propose a novel experimental configuration that allows for unsupervised LSPIV over large water bodies. Specifically, we design, develop, and characterize a lightweight, low cost, and stable quadricopter hosting a digital acquisition system. An active gimbal maintains the camera lens orthogonal to the water surface, thus preventing severe image distortions. Field experiments are performed to characterize the vehicle and assess the feasibility of the approach. We demonstrate that the quadricopter can hover above an area of 1×1m2 for 4–5 minutes with a payload of 500g. Further, LSPIV measurements on a natural stream confirm that the methodology can be reliably used for surface flow studies.


2021 ◽  
Author(s):  
Silvano Fortunato Dal Sasso ◽  
Alonso Pizarro ◽  
Sophie Pearce ◽  
Ian Maddock ◽  
Matthew T. Perks ◽  
...  

<p>Optical sensors coupled with image velocimetry techniques are becoming popular for river monitoring applications. In this context, new opportunities and challenges are growing for the research community aimed to: i) define standardized practices and methodologies; and ii) overcome some recognized uncertainty at the field scale. At this regard, the accuracy of image velocimetry techniques strongly depends on the occurrence and distribution of visible features on the water surface in consecutive frames. In a natural environment, the amount, spatial distribution and visibility of natural features on river surface are continuously challenging because of environmental factors and hydraulic conditions. The dimensionless seeding distribution index (SDI), recently introduced by Pizarro et al., 2020a,b and Dal Sasso et al., 2020, represents a metric based on seeding density and spatial distribution of tracers for identifying the best frame window (FW) during video footage. In this work, a methodology based on the SDI index was applied to different study cases with the Large Scale Particle Image Velocimetry (LSPIV) technique. Videos adopted are taken from the repository recently created by the COST Action Harmonious, which includes 13 case study across Europe and beyond for image velocimetry applications (Perks et al., 2020). The optimal frame window selection is based on two criteria: i) the maximization of the number of frames and ii) the minimization of SDI index. This methodology allowed an error reduction between 20 and 39% respect to the entire video configuration. This novel idea appears suitable for performing image velocimetry in natural settings where environmental and hydraulic conditions are extremely challenging and particularly useful for real-time observations from fixed river-gauged stations where an extended number of frames are usually recorded and analyzed.</p><p> </p><p><strong>References </strong></p><p>Dal Sasso S.F., Pizarro A., Manfreda S., Metrics for the Quantification of Seeding Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sensing, 12, 1789 (doi: 10.3390/rs12111789), 2020.</p><p>Perks M. T., Dal Sasso S. F., Hauet A., Jamieson E., Le Coz J., Pearce S., …Manfreda S, Towards harmonisation of image velocimetry techniques for river surface velocity observations. Earth System Science Data, https://doi.org/10.5194/essd-12-1545-2020, 12(3), 1545 – 1559, 2020.</p><p>Pizarro A., Dal Sasso S.F., Manfreda S., Refining image-velocimetry performances for streamflow monitoring: Seeding metrics to errors minimisation, Hydrological Processes, (doi: 10.1002/hyp.13919), 1-9, 2020.</p><p>Pizarro A., Dal Sasso S.F., Perks M. and Manfreda S., Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow, Hydrology and Earth System Sciences, 24, 5173–5185, (10.5194/hess-24-5173-2020), 2020.</p>


2001 ◽  
Vol 446 ◽  
pp. 25-65 ◽  
Author(s):  
FABRICE VERON ◽  
W. KENDALL MELVILLE

We present the results of laboratory and field measurements on the stability of wind-driven water surfaces. The laboratory measurements show that when exposed to an increasing wind starting from rest, surface current and wave generation is accompanied by a variety of phenomena that occur over comparable space and time scales. Of particular interest is the generation of small-scale, streamwise vortices, or Langmuir circulations, the clear influence of the circulations on the structure of the growing wave field, and the subsequent transition to turbulence of the surface flow. Following recent work by Melville, Shear & Veron (1998) and Veron & Melville (1999b), we show that the waves that are initially generated by the wind are then strongly modulated by the Langmuir circulations that follow. Direct measurements of the modulated wave variables are qualitatively consistent with geometrical optics and wave action conservation, but quantitative comparison remains elusive. Within the range of parameters of the experiments, both the surface waves and the Langmuir circulations first appear at constant Reynolds numbers of 370 ± 10 and 530 ± 20, respectively, based on the surface velocity and the depth of the laminar shear layer. The onset of the Langmuir circulations leads to a significant increase in the heat transfer across the surface. The field measurements in a boat basin display the same phenomena that are observed in the laboratory. The implications of the measurements for air–sea fluxes, especially heat and gas transfer, and sea-surface temperature, are discussed.


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 65
Author(s):  
Evangelos Rozos ◽  
Panayiotis Dimitriadis ◽  
Katerina Mazi ◽  
Spyridon Lykoudis ◽  
Antonis Koussis

Image velocimetry is a popular remote sensing method mainly because of the very modest cost of the necessary equipment. However, image velocimetry methods employ parameters that require high expertise to select appropriate values in order to obtain accurate surface flow velocity estimations. This introduces considerations regarding the subjectivity introduced in the definition of the parameter values and its impact on the estimated surface velocity. Alternatively, a statistical approach can be employed instead of directly selecting a value for each image velocimetry parameter. First, probability distribution should be defined for each model parameter, and then Monte Carlo simulations should be employed. In this paper, we demonstrate how this statistical approach can be used to simultaneously produce the confidence intervals of the estimated surface velocity, reduce the uncertainty of some parameters (more specifically, the size of the interrogation area), and reduce the subjectivity. Since image velocimetry algorithms are CPU-intensive, an alternative random number generator that allows obtaining the confidence intervals with a limited number of iterations is suggested. The case study indicated that if the statistical approach is applied diligently, one can achieve the previously mentioned threefold objective.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3330
Author(s):  
Milan Sedlář ◽  
Pavel Procházka ◽  
Martin Komárek ◽  
Václav Uruba ◽  
Vladislav Skála

This article presents results of the experimental research and numerical simulations of the flow in a pumping system’s discharge object with the welded siphon. The laboratory simplified model was used in the study. Two stationary flow regimes characterized by different volume flow rates and water level heights have been chosen. The study concentrates mainly on the regions below and behind the siphon outlet. The mathematical modelling using advanced turbulence models has been performed. The free-surface flow has been carried out by means of the volume-of-fluid method. The experimental results obtained by the particle image velocimetry method have been used for the mathematical model validation. The evolution and interactions of main flow structures are analyzed using visualizations and the spectral analysis. The presented results show a good agreement of the measured and calculated complex flow topology and give a deep insight into the flow structures below and behind the siphon outlet. The presented methodology and results can increase the applicability and reliability of the numerical tools used for the design of the pump and turbine stations and their optimization with respect to the efficiency, lifetime and environmental demands.


Author(s):  
Michal M. Mielnik ◽  
Lars R. Sætran

A novel seeding method, permitting high out-of-plane resolution and instantaneous (time-resolved) velocity field measurements using a standard Microscale Particle Image Velocimetry (micro-PIV) setup, is presented. The method relies on selective seeding of a thin fluid layer within an otherwise particle-free flow. The generated particle sheet defines the depth and position of the measurement plane, independently of the details of the optical setup. Therefore, for low magnification objectives in particular, considerable improvement in the measurement depth is possible. Selectively seeded micro-PIV (SeS-PIV) is applied to a microchannel flow, and the measured instantaneous velocity fields are in excellent agreement with the theoretical solution for the flowfield. The currently presented measurements have a depth-wise resolution 20% below the estimated optical measurement depth of the micro-PIV system. In principle, a measurement depth corresponding to the diameter of the tracer particles may be achieved.


Sign in / Sign up

Export Citation Format

Share Document