scholarly journals PRODUKSI BIOETANOL DARI HIDROLISAT ASAM TEPUNG UBI KAYU DENGAN KULTUR CAMPURAN Trichoderma viride dan Saccharomyces cerevisiae (Ethanol Production From Acid Hydrolysate Cassava Flour with Mixed Culture Trichoderma viride and Saccharomyces cerevisiae)

2015 ◽  
Vol 35 (04) ◽  
pp. 396
Author(s):  
I Wayan Arnata ◽  
Dwi Setyaningsih ◽  
Nur Richana

The objective of this research was to produce bioethanol from acid hydrolysate cassava flour with mix cultured Trichoderma viride and Saccharomyces cerevisiae. The hydrolysis of cassava flour to glucose was conducted by 0.4 M sulfuric acid using autoclave at 121°C, pressure at 1 atm for 10 min. The fermentation were performed in batch systemfor 96 hours in 30°C. Mixed culture of T. viride and S. cerevisiae in the fermentation process of acid hydrolysate carried out in two methode that is gradually and simultaneously. The results showed the acid hydrolyzate of cassava flour has a total sugar concentration of 38.93 ± 8.09% (w/v) and reducing sugar concentration of 22.04 ± 4.31% (w/v) . In thebioethanol production process shows that the bioethanol concentration 6.77 ± 1.23% (v/v), yield 27,97% (v/w) and fermentation effciency 59,01% of the theoretical value was achieved using gradually addition of mixed culture, while simultaneously addition of mixed culture was produced ethanol concentration 4.96 ± 0.39%(v/v), yield 19.85% (v/w)and fermentation effciency 62.72% of the theoretical value.Keywords: Bioethanol, cassava flour, acid hidrolysate, Trichoderma viride, Saccharomyces cerevisiae ABSTRAKTujuan dari penelitian ini adalah untuk memproduksi bioetanol dari hidrolisat asam tepung ubi kayu dengan menggunakan kultur campuran Trichoderma viride and Saccharomyces cerevisiae. Hidrolisis tepung ubi kayu untuk menghasilkan glukosa dilakukan dengan menggunakan H2SO4 0.4M, pada suhu 121°C, tekanan 1 atm selama 10 menit. Prosesfermentasi dilaksanakan secara batch selama 96 jam pada suhu 30°C. Pencampuran kultur T. viride dan S. cerevisiae pada proses fermentasi hidrolisat asam dilakukan dalam dua metode yaitu secara bertahap dan secara simultan. Hasil penelitian menunjukkan hidrolisat asam tepung ubi kayu mempunyai konsentrasi total gula 38,93 ± 8,09% (b/v) dankonsentrasi gula reduksi 22,04 ± 4,31% (b/v). Pada proses produksi bioetanol menunjukan bahwa dengan pencampuran kultur secara bertahap menghasilkan konsentrasi bioetanol 6,77 ± 1,23% (v/v), rendemen 27,97% (v/w) dan efisiensi fermentasi 59,01% dari perolehan bioetanol secara teoritis, sedangkan dengan pencampuran kultur secara simultan menghasilkan konsentrasi bioetanol 4,96 ± 0,39%(v/v), rendemen 19,85% (v/w) dan efisiensi fermentasi 62,72% dariperolehan bioetanol secara teoritis.Kata kunci: Bioetanol, tepung ubi kayu, hidrolisat asam, Trichoderma viride, Saccharomyces cerevisiae

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ping Wan ◽  
Dongmei Zhai ◽  
Zhen Wang ◽  
Xiushan Yang ◽  
Shen Tian

Saccharomyces cerevisiae Y5 (CGMCC no. 2660) and Issatchenkia orientalis Y4 (CGMCC no. 2159) were combined individually with Pichia stipitis CBS6054 to establish the cocultures of Y5 + CBS6054 and Y4 + CBS6054. The coculture Y5 + CBS6054 effectively metabolized furfural and HMF and converted xylose and glucose mixture to ethanol with ethanol concentration of 16.6 g/L and ethanol yield of 0.46 g ethanol/g sugar, corresponding to 91.2% of the maximal theoretical value in synthetic medium. Accordingly, the nondetoxified dilute-acid hydrolysate was used to produce ethanol by co-culture Y5 + CBS6054. The co-culture consumed glucose along with furfural and HMF completely in 12 h, and all xylose within 96 h, resulting in a final ethanol concentration of 27.4 g/L and ethanol yield of 0.43 g ethanol/g sugar, corresponding to 85.1% of the maximal theoretical value. The results indicated that the co-culture of Y5 + CBS6054 was a satisfying combination for ethanol production from non-detoxified dilute-acid lignocellulosic hydrolysates. This co-culture showed a promising prospect for industrial application.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dongxu Zhang ◽  
Yee Ling Ong ◽  
Zhi Li ◽  
Jin Chuan Wu

Getting high sugar concentrations in lignocellulosic biomass hydrolysate with reasonable yields of sugars is commercially attractive but very challenging. Two-step acid-catalyzed hydrolysis of oil palm empty fruit bunch (EFB) was conducted to get high sugar concentrations in the hydrolysate. The biphasic kinetic model was used to guide the optimization of the first step dilute acid-catalyzed hydrolysis of EFB. A total sugar concentration of 83.0 g/L with a xylose concentration of 69.5 g/L and a xylose yield of 84.0% was experimentally achieved, which is in well agreement with the model predictions under optimal conditions (3% H2SO4and 1.2% H3PO4, w/v, liquid to solid ratio 3 mL/g, 130°C, and 36 min). To further increase total sugar and xylose concentrations in hydrolysate, a second step hydrolysis was performed by adding fresh EFB to the hydrolysate at 130°C for 30 min, giving a total sugar concentration of 114.4 g/L with a xylose concentration of 93.5 g/L and a xylose yield of 56.5%. To the best of our knowledge, the total sugar and xylose concentrations are the highest among those ever reported for acid-catalyzed hydrolysis of lignocellulose.


2018 ◽  
Vol 7 (2) ◽  
pp. 100-107
Author(s):  
Megawati Megawati ◽  
Dewi Selvia Fardhyanti ◽  
Haniif Prasetiawan ◽  
Dhoni Hartanto ◽  
Ianatul Khoiroh ◽  
...  

Sawdust is one of the abundantly lignocellulosic materials in the world. Sawdust is considered promosing for ethanol production, because it contains mainly lignin, hemicellulose, and cellulose. The drying process was applied to pretreat sawdust to make its degradation process easier. Biodegradation of sawdust was conducted by enzymatic hydrolysis using cellulase. The volume of cellulase in the hydrolysis substrate was varied from 5 to 9% v/v. The sugar concentration produced by enzymatic hydrolysis of sawdust every 1 h was recorded as well as its fractal kinetics analysis. Fermentation using yeast in 5 days was also performed to convert sugar hydrolysate to ethanol. Optimal sugar concentration in hydrolysate obtained was about 0.15 mol/L with cellulase volume of 9% v/v and its ethanol concentration was about 0.059% v/v. Fractal kinetics models by Kopelman and Valjamae which can quantitatively describe enzymatic hydrolysis of sawdust using cellulase were used. However, the result of this study indicated that, at high enzyme volume (9% v/v), Valjamae model was more suitable than Kopelman. The fractal exponent value (h) was about 0.667 and the rate constants (k) were about 0.44, 0.53, and 0.58 1/h at the enzyme volume of 5, 7, and 9% v/v. Thus, it can be concluded that enzyme volumes significantly effect rate constants.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guangsen Fan ◽  
Chao Teng ◽  
Dai Xu ◽  
Zhilei Fu ◽  
Pengxiao Liu ◽  
...  

Ethyl acetate content has strong influence on the style and quality of Baijiu. Therefore, this study investigated the effect of Saccharomyces cerevisiae Y3401 on the production of ethyl acetate by Wickerhamomyces anomalus Y3604. Analysis of cell growth showed that Y3401 influences Y3604 by nutrient competition and inhibition by metabolites, while the effect of Y3604 on Y3401 was mainly competition for nutrients. Mixed fermentation with two yeasts was found to produce more ethyl acetate than a single fermentation. The highest yield of ethyl acetate was 2.99 g/L when the inoculation ratio of Y3401:Y3604 was 1:2. Synergistic fermentation of both yeasts improved ethyl acetate production and increased the content of other flavor compounds in liquid and simulated solid-state fermentation for Baijiu. Saccharomyces cerevisiae had a positive effect on ethyl acetate production in mixed culture and provides opportunities to alter the aroma and flavor perception of Baijiu.


2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


2018 ◽  
Vol 248 ◽  
pp. 04004
Author(s):  
Vike Darliyasi ◽  
Kurnia Herlina Dewi ◽  
Budiyanto

Bioethanol from Rimau Gerga Lebong (RGL) orange waste is one of the solution to overcome fuel oil problem. The aim of this research is to get the type of microorganisms and fermentation time that produce the highest ethanol from RGL orange waste. The research method used was Randomized Block Design (RBD) of two factors, namely type of microorganisms (Trichoderma viride, Saccharomyces cerevisiae, and Trichoderma viride + Saccharomyces cerevisiae) and fermentation time (3 days, 5 days, and 7 days. Within the three type of microorganisms with variations of fermentation time showed that the pH was able to carry out the fermentation process smoothly. The highest total dissolved solids were in the type of Trichoderma viride 3 days and 5 days, and the type of mix of microorganisms on the 3rd day. The highest ethanol content is in the type of Sachharomyces cerevisiae for 7 days. ANOVA result showed that the interaction between two treatments on the total dissolved solids experienced significant differences, so it continue with the DMRT test at a significant level of 0.5%. However, it is different from the results of ANOVA on ethanol content which showed that there were significant differences between ethanol content and types of microorganisms, but there was no significant difference on fermentation time


Sign in / Sign up

Export Citation Format

Share Document