scholarly journals Efek integrated nutrition programme terhadap profil lipid dan komposisi tubuh pada remaja obes

2019 ◽  
Vol 15 (3) ◽  
pp. 95
Author(s):  
Martha Ardiaria ◽  
Erin Ratna Kustanti ◽  
Ria Purnawian Sulistiani ◽  
Etika Ratna Noer

The effect of integrated nutrition programme on lipid profile and body composition among adolescent obesityBackground: Obesity is a serious public health issue increasingly in the adolescent. Obesity in adolescence will continue into adulthood and lead to later health problems. The adolescent has high food dense calories which high fat and low in fiber that can trigger obesity. Integrated Nutrition Programme (INP) is an intervention model for obesity with an emphasis on a low-calorie diet, low fat, high fiber, moderate physical activity, and nutrition counseling.Objective: This study aimed to evaluate the effect of INP on lipid profile and body composition in obese adolescents.Methods: Quasi-experimental study pre-post trial design with a total of subjects 18 obese adolescents. Duration of intervention in subjects for four weeks with a hypocaloric diet, low fat, high fiber, and prepared by a dietician. Moderate exercise and dietary counseling were conducted on the subject regularly. Bodyweight (BW) and waist circumference (WC) were monitored once a week. Food record intake is done before and during the intervention.Results: The mean weight loss of 1.55 kg. There is a difference in mean BW, WC, and BMI (p<0.01), whereas there were no significant differences in lipid profiles and body composition between before and after the intervention.Conclusions: INP can significantly affect weight loss, BMI, and WC as well as a significant increase in physical activity.

Author(s):  
Thunyaporn Phungviwatnikul ◽  
Anne H Lee ◽  
Sara E Belchik ◽  
Jan S Suchodolski ◽  
Kelly S Swanson

Abstract Canine obesity is associated with reduced lifespan and metabolic dysfunction, but can be managed by dietary intervention. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal microbiota and metabolites of overweight dogs. Twelve spayed female dogs [age: 5.5±1.1 yr; body weight (BW): 14.8±2.0 kg, body condition score (BCS): 7.9±0.8] were fed a HPHF diet during a 4-wk baseline phase to maintain BW. After baseline (wk 0), dogs were first fed 80% of baseline intake and then adjusted to target 1.5% weekly weight loss for 24 wk. Body composition using dual-energy x-ray absorptiometry and blood samples (wk 0, 6, 12, 18, 24), voluntary physical activity (wk 0, 7, 15, 23), and fresh fecal samples for microbiota and metabolite analysis (wk 0, 4, 8, 12, 16, 20, 24) were measured over time. Microbiota data were analyzed using QIIME 2. All data were analyzed statistically over time using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW and had 1.43±0.73% weight loss per wk. BCS decreased (P&lt;0.0001) by 2.7 units, fat mass decreased (P&lt;0.0001) by 3.1 kg, and fat percentage decreased (P&lt;0.0001) by 3.1 kg and 11.7% with weight loss. Many serum metabolites and hormones were altered, with triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreasing (P&lt;0.05) with weight loss. Relative abundances of fecal Bifidobacterium, Coriobacteriaceae UCG-002, undefined Muribaculaceae, Allobaculum, Eubacterium, Lachnospira, Negativivibacillus, Ruminococcus gauvreauii group, uncultured Erysipelotrichaceae, and Parasutterella increased (P&lt;0.05), whereas Prevotellaceae Ga6A1 group, Catenibacterium, Erysipelatoclostridium, Fusobacterium, Holdemanella, Lachnoclostridium, Lactobacillus, Megamonas, Peptoclostridium, Ruminococcus gnavus group, and Streptococcus decreased (P&lt;0.01) with weight loss. Despite the number of significant changes, a state of dysbiosis was not observed in overweight dogs. Fecal ammonia and secondary bile acids decreased, while fecal valerate increased with weight loss. Several correlations between gut microbial taxa and biological parameters were observed. Our results suggest that restricted feeding of a HPHF diet and weight loss promotes fat mass loss, minimizes lean mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal microbiota phylogeny and activity in overweight dogs.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 318-319
Author(s):  
Thunyaporn Phungviwatnikul ◽  
Sara E Belchik ◽  
Kelly S Swanson

Abstract Canine obesity can be managed by dietary energy restriction using a specifically formulated weight loss diet. The objective of this study was to determine the effects of weight loss on body composition, voluntary physical activity, and blood metabolites of overweight dogs while being fed a high-protein, high-fiber diet. All procedures were approved by the University of Illinois Institutional Animal Care and Use Committee prior to experimentation. Twelve overweight adult spayed female dogs (BW: 15.3±2.1 kg, BCS: 8.1±0.6) were fed a high-protein (CP: 42.0% DMB), high-fiber (TDF: 22.0% DMB) diet during a 5-wk baseline phase (wk 0) to identify food intake needed to maintain BW. A 24-wk weight loss phase followed. After wk 0, food was initially provided at 80% the amount needed to maintain BW and then adjusted weekly with a goal of 1.5–2% weight loss per wk. Data were analyzed statistically overtime using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW (P &lt; 0.0001), with 1.4±0.7% weight loss per wk. BCS decreased by 2.8 units (P &lt; 0.0001). During weight loss, dogs consumed an average of 457.5±61.4 kcal/d, with energy intake being reduced by a total of 43.8% by wk 24 compared to baseline. Lean muscle mass, fat mass, and fat percentage were reduced (P &lt; 0.0001) by 1.3 kg, 3.1 kg, and 11.7% respectively. Serum triglycerides, alkaline phosphatase, white blood cell counts, and neutrophils were decreased (P &lt; 0.0001), but serum bilirubin, creatinine, and blood urea nitrogen were increased (P &lt; 0.01) over time. Average daily physical activity changed over time, but was not greatly different due to weight loss. Our results suggest that a high-protein, high-fiber diet promotes fat mass loss, minimizes lean muscle mass loss, and reduces inflammatory marker and triglyceride concentrations in overweight dogs. Therefore, it is a suitable nutritional solution for weight loss programs in dogs.


Obesity ◽  
2013 ◽  
Vol 22 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Kristen M. Beavers ◽  
Daniel P. Beavers ◽  
Beverly A. Nesbit ◽  
Walter T. Ambrosius ◽  
Anthony P. Marsh ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1780 ◽  
Author(s):  
Miguel Ferrer ◽  
Xavier Capó ◽  
Miquel Martorell ◽  
Carla Busquets-Cortés ◽  
Cristina Bouzas ◽  
...  

A chronic inflammatory state is a major characteristic of the aging process, and physical activity is proposed as a key component for healthy aging. Our aim was to evaluate the body composition, hypertension, lipid profile, and inflammatory status of older adults, and these factors’ association with physical activity. A total of 116 elderly volunteers were categorized into terciles of quantitative metabolic equivalents of task (MET). Subjects in the first and third terciles were defined as sedentary and active subjects, respectively. Anthropometric and biochemical parameters, hemograms, and inflammatory markers were measured in plasma or peripheral mononuclear blood cells (PBMCs). The active groups exercised more than their sedentary counterparts. The practice of physical activity was accompanied by lower weight, fat mass, body mass index, and diastolic blood pressure when compared to a more sedentary life-style. Physical activity also lowered the haematocrit and total leukocyte, neutrophil, and lymphocyte counts. The practice of exercise induced a decrease in the IL-6 circulating levels and the TLR2 protein levels in PBMCs, while the expression of the anti-inflammatory IL-10 was activated in active subjects. The regular practice of physical activity exerts beneficial effects on body composition and the anti-inflammatory status of old people.


2008 ◽  
Vol 78 (6) ◽  
pp. 275-281 ◽  
Author(s):  
Niels Boon

Obesity is a major health problem in the developed and developing world. Many “functional” foods and ingredients are advocated for their effects on body composition but few have consistent scientific support for their efficacy. However, an increasing amount of mechanistic and clinical evidence is building for green tea. The tea plant is naturally rich in a group of antioxidants known as catechins. Unlike black tea, green tea production involves little processing and fermentation and therefore, green tea brews are rich in catechins. Green tea has been suggested to have a number of potential health benefits in areas such as cardiovascular disease, cancer prevention, glucose homeostasis and dental health. Although there is some promising evidence in all of these areas, more data from human intervention trials are needed. A lot of attention has lately been focused on the beneficial effects of green tea on body composition and particularly visceral fat, which has been shown to have a strong link with different components of the metabolic syndrome such as cardiovascular disease and type 2 diabetes. Most, but not all, of the positive results come from a number Asian studies, in which overweight subjects (men and women) consumed green tea for approximately 12 weeks. Finally, green tea may also have measurable acute effects on energy metabolism and fat oxidation and in particular during physical activity, as evidenced by other studies specifically looking at these endpoints. Small cumulative effects on energy metabolism could also be responsible for the longer-tem effects of green tea on body composition, and these long-term effects may also be most apparent in the context of moderate physical activity. However, more research is needed to further clarify the exact mechanisms of action and to extrapolate these findings to non-Asian populations.


2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Thunyaporn Phungviwatnikul ◽  
Helen Valentine ◽  
Maria R C de Godoy ◽  
Kelly S Swanson

Abstract Neutering is a risk factor for pet obesity, which reduces the quality and length of life. Dietary interventions may serve as preventive and therapeutic options for pet obesity. The objective of this study was to evaluate the effects of specially formulated diets on body weight (BW), body composition, and blood hormones and metabolites of adult female dogs after spay surgery. All procedures were approved by the University of Illinois Institutional Animal Care and Use Committee prior to experimentation. Twenty-eight healthy adult intact female Beagles (3.02 ± 0.7 yr; 10.28 ± 0.8 kg; body condition score [BCS]: 4.98 ± 0.57) were used in a longitudinal study. Twenty-four dogs were spayed and randomly allotted to one of three experimental diets: 1) moderate-protein, moderate-fiber diet (control; COSP), 2) high-protein, high-fiber diet (HP-HF), or 3) high-protein, high-fiber diet plus omega-3 and medium-chain fatty acids (HP-HF-O). Four dogs were sham-operated and fed the control diet (COSH). Food intake, BW, BCS, blood hormones and metabolites, body composition (via dual-energy X-ray absorptiometry scans), and voluntary physical activity (via Actical devices) were measured over time. After spay, dogs were fed to maintain BW for 12 wk (restricted phase), then allowed to overeat for 12 wk (ad libitum phase). Change from baseline data was analyzed for treatment, time, and treatment × time effects as well as treatment, feeding regimen, and treatment × feeding regimen effects. During the first 12 wk, HP-HF and HP-HF-O had lower (P &lt; 0.01) blood cholesterol than COSH and COSP. During the second 12 wk, HP-HF and HP-HF-O ate more (P &lt; 0.01) food (g/d) than COSH. BCS change for COSP was greater (P &lt; 0.01) than COSH from week 21 to 24, but HP-HF and HP-HF-O were not different. When comparing data by feeding regimen, HP-HF and HP-HF-O had a greater reduction in serum cholesterol (P &lt; 0.001) than COSH and COSP. During the second 12 wk, all spayed dogs consumed more (P &lt; 0.01) food than COSH. However, COSH, HP-HF, and HP-HF-O had a lower (P &lt; 0.001) increase in BCS than COSP. HP-HF-O and COSH had similar serum leptin during weeks 12 to 24. COSP had higher (P ≤ 0.01) serum C-reactive protein than HP-HF-O. Overall, body fat increase in COSP was greater (P &lt; 0.05) than for COSH at week 24, while HP-HF and HP-HF-O were intermediate. Our results indicate that an HP-HF diet can limit weight gain and body fat increase and attenuate serum cholesterol, triglycerides, and leptin concentrations in dogs after spay surgery.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S841-S841
Author(s):  
Samaneh Farsijani ◽  
Jane A Cauley ◽  
Adam J Santanasto ◽  
Nancy W Glynn ◽  
Robert M Boudreau ◽  
...  

Abstract Background: Optimization of intentional weight loss in obese older adults, through preferential fat mass reduction, is challenging, as the concomitant lean mass loss may exacerbate sarcopenia. Here, we assessed whether changes in within-day protein intake distribution are related to improvements in body composition in overweight/obese older adults during a hypocaloric and exercise intervention. Methods: Thirty-six community-dwelling, overweight-to-obese (BMI 28.0-39.9 kg/m2), sedentary older adults (aged 70.6±6.1 years) were randomized into either physical activity plus successful aging health education (PA+SA; n=15) or physical activity plus weight loss (PA+WL; n=21) programs. Body composition (by CT and DXA) and dietary intake (by three-day food records) were determined at baseline, 6-month, and 12-month follow-up visits. Within-day protein distribution was calculated as the coefficient of variation of protein ingested at breakfast [5:00–10:59], lunch [11:00–16:59] and dinner [17:00–1:00]. Secondary analysis was performed to determine associations between changes in protein intake distribution and body composition. Results: In both groups, baseline protein intake was skewed towards dinner. The pattern of protein intake changed towards a more even within-day distribution in PA+WL, but it remained unchanged in PA+SA. Transition towards a more even pattern of protein intake was independently associated with a greater decline in BMI (P&lt;0.05) and abdominal subcutaneous fat (P&lt;0.05) in PA+WL. However, changes in protein CV were not associated with weight loss in PA+SA. Conclusion: Our results show that mealtime distribution of protein intake throughout the day was associated with improved weight and fat loss under hypocaloric diet combined with physical activity.


2004 ◽  
Vol 22 (12) ◽  
pp. 2379-2387 ◽  
Author(s):  
Cheryl L. Rock ◽  
Shirley W. Flatt ◽  
Cynthia A. Thomson ◽  
Marcia L. Stefanick ◽  
Vicky A. Newman ◽  
...  

Purpose Diet intervention trials are testing whether postdiagnosis dietary modification can influence breast cancer recurrence and survival. One possible mechanism is an effect on reproductive steroid hormones. Participants and Methods Serum reproductive steroid hormones were measured at enrollment and 1 year in 291 women with a history of breast cancer who were enrolled onto a randomized, controlled diet intervention trial. Dietary goals for the intervention group were increased fiber, vegetable, and fruit intakes and reduced fat intake. Estradiol, bioavailable estradiol, estrone, estrone sulfate, androstenedione, testosterone, dehydroepiandrosterone sulfate, follicle-stimulating hormone, and sex hormone-binding globulin were measured. Results The intervention (but not the comparison) group reported a significantly lower intake of energy from fat (21% v 28%), and higher intake of fiber (29 g/d v 22 g/d), at 1-year follow-up (P < .001). Significant weight loss did not occur in either group. A significant difference in the change in bioavailable estradiol concentration from baseline to 1 year in the intervention (−13 pmol/L) versus the comparison (+3 pmol/L) group was observed (P < .05). Change in fiber (but not fat) intake was significantly and independently related to change in serum bioavailable estradiol (P < .01) and total estradiol (P < .05) concentrations. Conclusion Results from this study indicate that a high-fiber, low-fat diet intervention is associated with reduced serum bioavailable estradiol concentration in women diagnosed with breast cancer, the majority of whom did not exhibit weight loss. Increased fiber intake was independently related to the reduction in serum estradiol concentration.


Sign in / Sign up

Export Citation Format

Share Document