scholarly journals Antifungal Activity of Bacterial Isolates from Straw Mushroom Cultivation Medium against Phytopathogenic Fungi

2021 ◽  
Vol 6 (1) ◽  
pp. 59235
Author(s):  
Masrukhin Masrukhin ◽  
Ade Lia Putri ◽  
Tri Ratna Sulistiyani ◽  
Muhammad Ilyas ◽  
Ismu Purwaningsih ◽  
...  

Several bacteria were isolated from straw mushroom (Volvariella volvacea) cultivation medium. There are three potential isolates previously characterized and has growth inhibition effect against V. volvacea. This screening result lead to the further study about the inhibition activity against phytopathogenic fungi. The aim of this research is to investigate the antifungal activity of three bacterial isolates against three phytopathogenic fungi and identification of the bacteria. The method used in this study are antifungal assay using co-culture method and disk difussion assay using the filtrate of each bacteria. The profile of antifungal compound was identified using ethyl acetate extract followed by evaporation and gas chromatography (GC-MS) analysis. Identification of each isolates was performed using 16S rDNA amplification and sequencing. Three phytopathogenic fungi i.e Cercospora lactucae (InaCC F168), Colletotrichum gloeosporides (InaCC F304) and Fusarium oxysporum f.sp. cubense (F817) were co-cultured with bacterial isolates C2.2, C3.8, and D3.3. The C3.8 isolate has highest average inhibition activity either using isolate and filtrate. The result relatively consistent against three phytopathogenic fungi. The metabolite profile of C3.8 isolate showed the Bis(2-ethylhexyl) phthalate as the main compound with 97% similarity. Bis(2-ethylhexyl) phthalate has potential effect as antibacterial and antifungal compound. According to EzBioCloud and GeneBank databases, the C2.2 isolate identified as Bacillus tequilensis, C3.8 as Bacillus siamensis and D3.3 as Bacillus subtilis subsp. Subtilis. This study also shows the potential of Bacillus siamensis C3.8 as biocontrol against phytopathogenic fungi.

Author(s):  
Dragana Bjelic ◽  
Jelena Marinkovic ◽  
Branislava Tintor ◽  
Sonja Tancic ◽  
Aleksandra Nastasic ◽  
...  

?mong 50 bacterial isolates obtained from maize rhizospher?, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA), siderophores, hydrogen cyanide (HCN), exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.). Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 ?g ml-1) and Azt5 (29.44 and 50.38 ?g ml-1) in the medium with addition of L-tryptophan (2.5 and 5 mM). The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI) obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%.


Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 837-843
Author(s):  
Qonita Gina Fadhilah ◽  
Iman Santoso ◽  
Andi Eko Maryanto ◽  
Sarini Abdullah ◽  
Yasman Yasman

Marine actinomycetes are being explored to discover potential actinomycetes that produce antifungal compounds. In a previous study, marine actinomycetes isolates from the mangrove ecosystem were found to inhibit growth of the phytopathogenic fungi Colletotrichum siamense KA. In this study, the three of these isolates with the highest antagonistic activity—SM11, SM14, and SM15—were evaluated for their antifungal activity using antibiosis assay. The fermentation was performed in SCB:PDB medium (1:1) for 6, 9, and 12 days. The results showed that SM14 was the strongest potential isolate; it inhibited the growth of C. siamense KA on average up to 64.90% for 12 days on PDA filtrate medium. Molecular identification showed SM14 was closely related to Streptomyces sanyensis, but had differences in morphological and biochemical characteristics compared to SM11 or SM15. This indicated that the three isolates were different strains and may challenge further research on identifying and analyzing their antifungal compounds.


2018 ◽  
Vol 18 (1) ◽  
pp. 88-97
Author(s):  
Renu Chaudhary ◽  
Meenakshi Balhara ◽  
Deepak Jangir ◽  
Mrridula Dangi ◽  
Mehak Dangi ◽  
...  

Background: The impact of fungal infections on human health has increased considerably within a past few decades. Although drugs with antifungal properties are available, but they are less effective and are associated with side effects. Objective and Method: To screen the bacterial isolates from Sesamum indicum and to investigate the antifungal activity of the screened bacterial isolates against Aspergillus sp. Co-culture assay and agar overlay were used to scrutinize the anti-Aspergillus activity. Furthermore, optimization of media and growth conditions to enhance the production of anti-Aspergillus compound. Results: Several bacterial cultures were isolated from Sesamum indicum rhizosphere collected from Mandi (H.P.) India. These bacterial cultures were assayed for antifungal activity against Aspergillus species i.e. A. fumigatus and A. niger. Two most potent strains were chosen for more detailed analyses. The biochemical characterization and 16S ribosomal RNA sequencing revealed that Burkholderia sp. strain RC1 and Acinetobacter pittii strain RC2 exhibit strong similarity (100%) with Burkholderia sp. SR2-07 and Acinetobacter sp. strain 3-59. Additionally, it was also validated that RC1 and RC2 showed significant difference in the production of anti-Aspergillusactivity under altered growth conditions. Conclusion: Results from this study recommend that plant rhizosphere remains a rich hotspot for delivering a novel antifungal compounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shabnam Javed ◽  
Zaid Mahmood ◽  
Khalid Mohammed Khan ◽  
Satyajit D. Sarker ◽  
Arshad Javaid ◽  
...  

AbstractAntifungal activity of Monothecabuxifolia methanolic extract and its various fractions were assessed against Macrophominaphaseolina, a soil-borne fungal pathogen of more than 500 vegetal species as well as rare and emerging opportunistic human pathogen. Different concentrations of methanolic extract (3.125 to 200 mg mL−1) inhibited fungal biomass by 39–45%. Isolated n-hexane, chloroform and ethyl acetate fractions suppressed fungal biomass by 32–52%, 29–50% and 29–35%, respectively. Triterpenes lupeol and lupeol acetate (1, 2) were isolated from n-hexane while betulin, β-sitosterol, β-amyrin, oleanolic acid (3–6) were isolated from chloroform fraction. Vanillic acid, protocatechuic acid, kaempferol and quercetin (7–10) were isolated from the ethyl acetate fraction and identified using various spectroscopic techniques namely mass spectroscopy and NMR. Antifungal activity of different concentrations (0.0312 to 2 mg mL−1) of the isolated compounds was evaluated and compared with the activity of a broad spectrum fungicide mancozeb. Different concentrations of mencozeb reduced fungal biomass by 83–85%. Among the isolated compounds lupeol acetate (2) was found the highest antifungal against M.phaseolina followed by betulin (3), vanillic acid (7), protocatechuic acid (8), β-amyrin (5) and oleanolic acid (6) resulting in 79–81%, 77–79%, 74–79%, 67–72%, 68–71% and 68–71%, respectively. Rest of the compounds also showed considerable antifungal activity and reduced M.phaseolina biomass by 41–64%.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3256
Author(s):  
Luis C. Chitiva-Chitiva ◽  
Cristóbal Ladino-Vargas ◽  
Luis E. Cuca-Suárez ◽  
Juliet A. Prieto-Rodríguez ◽  
Oscar J. Patiño-Ladino

In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1–3), one dihydrochalcone (4) and a mixture of sterols (5–7). Seven derivatives (8–14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure–activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 94
Author(s):  
Cláudia Ferreira ◽  
Rui Oliveira

Synthetic fungicides for crops protection raise environmental and human concerns due to accumulation in edible vegetables, showing significant toxicity to humans, and in soil, groundwater and rivers, affecting ecological balance. In addition, they are prone to the development of resistant strains because of the single target-based mechanism of action. Plant extracts provide attractive alternatives, as they constitute a rich source of biodegradable secondary metabolites, such as phenols, flavonoids and saponins, which have multiple modes of antifungal action and a lower probability of the development of resistant fungi. This work has the objective of identifying plant extracts with antifungal activity, aiming to contribute to food safety and sustainable agricultural practices. We selected a saponin-containing plant, Plantago major, and extracted secondary metabolites with 50% (v/v) ethanol, dried by evaporation, and dissolved in water. For antifungal activity, the phytopathogenic fungi Colletotrichum acutatum, Colletotrichum gloeosporioides, Colletotrichum godetiae, Colletotrichum nymphaeae, Diplodia corticola and Phytophthora cinnamomi were selected because they affect fruits and vegetables, such as strawberry, almond, apple, avocado, blueberry and chestnut trees. The aqueous extract was incorporated into PDA medium at different concentrations and mycelial discs were placed in the center of each Petri dish. Growth was measured as the radial mycelial growth at 3, 6, and 9 days incubation at 25 °C in the dark. The maximum growth inhibition (32.2%) was obtained against P. cinnamomi with 2000 µg/mL extract followed by C. gloeosporioides (25.7%) on the sixth day and by C. godetiae and C. nymphaeae (21.1%) on the ninth day. Results show that P. major presents antifungal activity in all phytopathogenic fungi tested and the extract can be used to protect important crops, by inhibiting the development of fungal infections and promoting food security and a sustainable agriculture.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Paraj Shukla ◽  
Suresh Walia ◽  
Vivek Ahluwalia ◽  
Balraj S. Parmar ◽  
Muraleedharan G. Nair

Thirty known dialkanoates of ethylene, propylene and diethylene glycols were synthesized by reacting the glycols with acyl chlorides and their structures confirmed by IR, NMR and mass spectral analyses. They exhibited significant antifungal activity against two phytopathogenic fungi Rhizoctonia solani Kuehn and Sclerotium rolfsii Sacc in a dose dependent manner. Propylene glycol dipentanoate was the most active against R. solani. followed by diethylene glycol dibutanoate and ethylene glycol dibutanoate. Against S. rolfsii ethylene glycol diheptanoate was found to be most active followed by diethylene glycol diisobutanoate As compared to the standard reference benomyl (EC50 5.16 μg/mL), the potential alkanediol dialkanoates showed EC50 in the range of 33 – 60 μg/mL.


Molecules ◽  
2012 ◽  
Vol 17 (11) ◽  
pp. 13026-13035 ◽  
Author(s):  
Xin-Juan Yang ◽  
Fang Miao ◽  
Yao Yao ◽  
Fang-Jun Cao ◽  
Rui Yang ◽  
...  

2020 ◽  
Author(s):  
Shraddha P. Pawar ◽  
Ambalal B. Chaudhari

Abstract Pyrrolnitrin (PRN) from rhizobacteria displays a key role in biocontrol of phytopathogenic fungi in rhizospheric soil. Therefore, different rhizospheric soils were investigated for the prevalence of PRN producer in minimal salt (MS) medium containing tryptophan (0.2 M NaCl; pH 8) using three successive enrichments. Of 12% isolates, only five bacterial strains had shown PRN secretion, screened with Thin Layer Chromatography (Rf 0.8) and antifungal activity (27 mm) against phytopathogen. The phenetic and 16S rRNA sequence revealed the close affiliation of isolates (KMB, M-2, M-11, TW3, and TO2) to Stenotrophomonas rhizophila (KY800458), Enterobacter spp. (KY800455), Brevibacillus parabrevis (KY800454), Serratia marcescens (KY800456) and Serratia nemtodiphila (KY800457). Purified compound from isolates was characterised using UV, IR, HPLC, LCMS and GCMS as PRN. However, BLASTn hit of prn gene sequences from both Serratia species showed 99% similarity with NADPH dependent FMN reductase component (prnF). The homology protein model of prnF was developed from translated sequence of S. marcescens TW3 with chromate reductase of Escherichia coli K-12. Docking with FMN and NADPH was performed. The study demonstrated the possible role of prnF NADPH dependent FMN reductases in prnD for supply of reduced flavin in rhizobacterial strain of Serratia spp. which may pave a way to understand PRN production.


Sign in / Sign up

Export Citation Format

Share Document