scholarly journals MAGNETIC MICROSPHERE AN EMERGING DRUG DELIVERY SYSTEM

Author(s):  
Diksha Sharma ◽  
Abhishek Sharma

  The drug delivery system has been advanced to release the drug according to the body requirement during the entire period of treatment and also for the delivery at the targeted site. Several novel drug delivery systems have emerged encompassing different route of administration to achieve controlled and targeted drug delivery, magnetic microsphere carrier being one of them. Magnetic microsphere is an alternative to traditional radiation methods. As the traditional radiation methods use highly penetrating radiation that is absorbed throughout the body and cause side effects hence its use is limited. Therefore, a safe and effective alternate is needed like magnetic microsphere. The excessive circulating drug particles are minimized by this delivery system. Moreover, the aim of specific targeting is to enhance the effectiveness of drug delivery and at the same time to lessen the toxicity and side effects. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microsphere are chitosan, dextran, etc. One of the most utilized magnetic microspheres is serum albumine whether from human or other suitable animals. Drug release from the albumin microsphere can be controlled by various stabilization procedures. Overall, the targeted magnetic microsphere is much valuable novel drug delivery system for what more work have to be done. By knowing the importance of all this, the present paper reviews the mechanism, preparation, and applications of magnetic microspheres. As the targeted drug delivery system implies selective and effective localization of drug into the target at therapeutic concentrations with limited access to non-target sites. Magnetic microspheres hold great promises for reaching the goal of controlled and site-specific drug delivery.

Author(s):  
Elahe Darvishi ◽  
Mahsa Minadi ◽  
Somayeh Mirsadeghi ◽  
Behrang Shiri

Introduction: Much research has been carried out to improve drug delivery and targeted drug delivery to the body in order to minimize side effects, provide controlled delivery of the drug to the desired location and to achieve optimal therapeutic effects. Zeolitic imidazolate-8 (ZIF-8) is a subset of MOFs that are biocompatible, stable in the aquatic environment and have adjustable porosity. In addition, at pHs 5 or 6, the bond between imidazolate-zinc ions disappears and releases the drug. In this project, ZIF-8 was used as a curcumin carrier to improve the physicochemical properties and enhance the efficacy of lipophilic drugs in the treatment of cancer. Methods: This research was a basic experimental study. ZIF-8 nanoparticles were fabricated by co-precipitation method. In addition, to prove their pH sensitivity, curcumin was first encapsulated in situ in ZIF-8 and characterized by XRD, SEM, TEM, DLS methods. Then its release was investigated at two pH of five and 7.4 saline phosphate buffer. Finally, In vitro study by MTT assay was performed on prostate cancer cell line (PC3). Data were compared by analysis of variance (ANOVA) using SPSS version 16 software. Results: After characterization of the nanoparticles by the mentioned methods, it was found that the nanoparticle dimensions were between 80-60 nm and the nanoparticle dimensions with curcumin were between 120-110 nm. In addition, in the synthesis of ZIF-8 nanoparticles, %72 of the drug was loaded, which is an acceptable amount. Conclusion: These nanoparticles showed high capacity in the treatment of prostate cancer and minimal damage to healthy cells. It can be said that using this formulation for targeted drug delivery of cancer not only reduces the side effects of anti-cancer drugs but also increases their effectiveness and can also be used to deliver low-soluble or insoluble drugs in biological environments.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 150-155
Author(s):  
Hans Raj ◽  
Ankita Sharma ◽  
Shagun Sharma ◽  
Kapil Kumar Verma ◽  
Amit Chaudhary

Carrier technology is a novel and groundbreaking drug delivery system. Microspheres transmit the drug by affixing it to carrier particle-like Microspheres, Nanoparticles and Liposomes due to their smaller size and other useful properties. Mucoadhesive Microspheres are an integral component of this multi-particle drug delivery system and play an important function in the delivery of a novel drug. This drug delivery improves the therapeutic effectiveness of the drug. Mucoadhesive microspheres have a longer duration of residence at the absorption site, which leads to the accuracy of the drug targeting at the absorption site and improves the therapeutic efficacy of the drug. Mucoadhesive microspheres are formed by either systemic or local effects in gastrointestinal, oral, vaginal, nasal, rectal, ocular delivery. This is the ideal targeting device which could be done in a variety of ways. Keywords: Microspheres, Bioadhesion, Polymer, Bioavailability


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3321
Author(s):  
Etienne J. Slapak ◽  
Lily Kong ◽  
Mouad el Mandili ◽  
Rienk Nieuwland ◽  
Alexander Kros ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) has the worst survival rate of all cancers. This poor prognosis results from the lack of efficient systemic treatment regimens, demanding high-dose chemotherapy that causes severe side effects. To overcome dose-dependent toxicities, we explored the efficacy of targeted drug delivery using a protease-dependent drug-release system. To this end, we developed a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSN) functionalized with an avidin–biotin gatekeeper system containing a protease linker that is specifically cleaved by tumor cells. Bioinformatic analysis identified ADAM9 as a PDAC-enriched protease, and PDAC cell-derived conditioned medium efficiently cleaved protease linkers containing ADAM9 substrates. Cleavage was PDAC specific as conditioned medium from leukocytes was unable to cleave the ADAM9 substrate. Protease linker-functionalized MSNs were efficiently capped with avidin, and cap removal was confirmed to occur in the presence of PDAC cell-derived ADAM9. Subsequent treatment of PDAC cells in vitro with paclitaxel-loaded MSNs indeed showed high cytotoxicity, whereas no cell death was observed in white blood cell-derived cell lines, confirming efficacy of the nanoparticle-mediated drug delivery system. Taken together, this research introduces a novel ADAM9-responsive, protease-dependent, drug delivery system for PDAC as a promising tool to reduce the cytotoxicity of systemic chemotherapy.


2021 ◽  
Vol 28 (3) ◽  
pp. 359-359
Author(s):  
Hongfei Liu ◽  
Jie Zhu ◽  
Pengyue Bao ◽  
Yueping Ding ◽  
Jiapeng Wang ◽  
...  

The authors are regretful for submitting and approving the publication of incorrect Figure 4 in this article. Below is the corrected version along with the revised caption. The electronic version of the article has already been corrected.


Author(s):  
Vijay R. Salunkhe ◽  
Prasanna S. Patil ◽  
Ganesh H. Wadkar ◽  
Somnath D. Bhinge

Herbal medicines have tremendous therapeutic potential that can explored across various effective drug delivery system. Decoctions, herbal teas, tinctures, glyceritum, oxymel, and use much soap, herbal tablets, herbal capsules, and herbal cream, herbal books, and prepared the confection of the most commonly available forms of dosage. The less use of herbal formulations in recent decades due to their lack of standardization. It is possible to use plant extract and isolated constituents to overcome this problem. But these phytoconstituents are suffering from drawbacks, mostly due to problems with stability and low lipid solubility. Novel drug delivery such as liposomes plays an important role in problem solving. Infact, compliance with the patient also improves. The review article discusses the recent status of new herbal liposomal formulations and describes the different ways in which these formulations are prepared.


Sign in / Sign up

Export Citation Format

Share Document