scholarly journals LITHISTID SPONGES DERIVED COMPOUNDS AND THEIR IMPORTANCE IN BIOLOGICAL RESEARCH - A REVIEW

Author(s):  
Abirla M ◽  
Brindha Devi P

Lithistid sponges have an important source of complex natural compounds with biological activities. The lithistid sponges are of interest to biomedical science because of the great variety of pharmaceutically relevant biological activities of their chemical extracts and are considered as economically important. The compounds identified in these sponges have therapeutic potential and have been frequently hypothesized to contain compounds of bacterial origin. The peptides identified from these lithistid sponges are found to be the sources of antifungal activity. The active agents of these sponges also have cytotoxic and immunosuppressive activities. Many of the cyclic peptides of lithistid represent the anti-HIV activity. The different structure and biological activities of the compounds derived from these sponges have more chemical aspects too.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 488
Author(s):  
Afrah E. Mohammed ◽  
Zainab H. Abdul-Hameed ◽  
Modhi O. Alotaibi ◽  
Nahed O. Bawakid ◽  
Tariq R. Sobahi ◽  
...  

By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Anu Kajal ◽  
Suman Bala ◽  
Neha Sharma ◽  
Sunil Kamboj ◽  
Vipin Saini

Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents.


2011 ◽  
Vol 286 (27) ◽  
pp. 24231-24241 ◽  
Author(s):  
Sónia Troeira Henriques ◽  
Yen-Hua Huang ◽  
K. Johan Rosengren ◽  
Henri G. Franquelim ◽  
Filomena A. Carvalho ◽  
...  

Cyclotides, a large family of cyclic peptides from plants, have a broad range of biological activities, including insecticidal, cytotoxic, and anti-HIV activities. In all of these activities, cell membranes seem likely to be the primary target for cyclotides. However, the mechanistic role of lipid membranes in the activity of cyclotides remains unclear. To determine the role of lipid organization in the activity of the prototypic cyclotide, kalata B1 (kB1), and synthetic analogs, their bioactivities and affinities for model membranes were evaluated. We found that the bioactivity of kB1 is dependent on the lipid composition of target cell membranes. In particular, the activity of kB1 requires specific interactions with phospholipids containing phosphatidylethanolamine (PE) headgroups but is further modulated by nonspecific peptide-lipid hydrophobic interactions, which are favored in raft-like membranes. Negatively charged phospholipids do not favor high kB1 affinity. This lipid selectivity explains trends in antimicrobial and hemolytic activities of kB1; it does not target bacterial cell walls, which are negatively charged and lacking PE-phospholipids but can insert in the membranes of red blood cells, which have a low PE content and raft domains in their outer layer. We further show that the anti-HIV activity of kB1 is the result of its ability to target and disrupt the membranes of HIV particles, which are raft-like membranes very rich in PE-phospholipids.


Author(s):  
Shifali Thakur ◽  
Bhawna Walia ◽  
Gitika Chaudhary

Cinnamomum zeylanicum is a widely utilized condiment for its therapeutic uses since ancient times. It is indigenous to Sri Lanka and Southern India. Cinnamon is one of the ancient spice which belongs to the Lauraceae family. In the modern era, it is widely used in industrial products like candies, chewing gums, mouthwash, and toothpaste. It is a well-considered plant remedy used in the treatment of many diseases in a traditional system like Ayurveda and the Folk system of medicine. It is used in many polyherbal formulations for curing various ailments. The plant is enriched with many vital oils and other derivatives such as cinnamaldehyde, cinnamic acid, and cinnamate. Eugenol is the active principle constituent associated with many biological activities. The main therapeutic actions of the plant are antimicrobial, wound healing, antidiabetic, anti-HIV, anti-anxiety, and anti-Parkinson’s. The present review has summarized the therapeutic and pharmacological value of Cinnamomum zeylanicum along with its utilization in the Folklore medicinal system.   


Author(s):  
SAGMA EG ◽  
BASKAR LAKSHMANAN

Pyrimidine nucleus exhibited remarkable pharmacological activities. The review of an article indicates that the compounds having pyrimidine nucleus have a wide range of therapeutic uses that include antiviral, anti-inflammatory, antibacterial, anticancer, antiviral, anti-HIV, antihypertensive, sedatives and hypnotics, anticonvulsant, and antihistaminic. This review article is intended to describe the antiviral activity of a compound containing the pyrimidine nucleus. The chemistry of pyrimidine is a thriving field for the study of their pharmacological uses. Numerous methods for the synthesis of pyrimidine as also their diverse reactions offer enormous scope in the field of medicinal chemistry. The review article aims to reveal the work reported on the antiviral synthetic pyrimidine compound and the chemistry and biological activities of pyrimidine during the past few decades. During this review article, we are mainly focusing the viral activities in different derivatives of pyrimidine nucleus. Therefore, we are going to discuss some important issues such as the good ideas to resist our increasing viral disease and the importance of a pyrimidine nucleus in the viral drugs. Hence, these are the main things we are going to discuss in this article.


2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.


2020 ◽  
Vol 23 (21) ◽  
pp. 2271-2294 ◽  
Author(s):  
Divya Utreja ◽  
Shivali Sharma ◽  
Akhil Goyal ◽  
Komalpreet Kaur ◽  
Sonia Kaushal

Heterocyclic chemistry is the only branch of chemistry that has applications in varied areas such as dyes, photosensitizers, coordination compounds, polymeric materials, biological, and many other fields. Quinoline and its derivatives have always engrossed both synthetic chemists and biologists because of their diverse chemical and pharmacological properties as these ring systems can be easily found in various natural products, especially in alkaloids. Among alkaloids, quinoline derivatives i.e. quinolinium salts have attracted much attention nowadays owing to their diverse biological profile such as antimicrobial, antitumor, antifungal, hypotensive, anti-HIV, analgesics and anti-inflammatory, etc. Quinoline and its analogs have recently been examined for their modes of function in the inhibition of tyrosine kinases, proteasome, tubulin polymerization, topoisomerase, and DNA repair. These observations have been guiding scientists for the expansion of new quinoline derivatives with improved and varied biological activities. Quinolinium salts have immense possibilities and scope to investigate these compounds as potential drug candidates. Therefore, we shall present a concise compilation of this work to aid in present knowledge and to help researchers explore an interesting quinoline class having medicinal potential.


Author(s):  
Justyna Żwawiak ◽  
Anna Pawełczyk ◽  
Dorota Olender ◽  
Lucjusz Zaprutko

: Triterpenes are a wide and important group of compounds that have several promising pharmacological properties, such as hepatoprotective, anti-inflammatory, anti-HIV, antioxidant, or anticancer activities. Such potent substances can be successfully incorporated in more complex chemical systems e.g. codrugs or pro-drugs that have better pharmacological profile. The codrug is connected with a drug formation pathway to chemically cohere at least two drug molecules to improve positive therapeutic efficiency or decrease side effects. The codrug can be cleaved in the organism to generate effective compounds previously used as substrates. This article presents an overview of codrugs that consist of pentacyclic triterpene moiety that is chosen as a basic codrug moiety due to their wide range of vital activities and another drug molecule fragment. It was found that triterpenoid codrugs are characterized by a wide range of biological activities. However, most of them have anticancer potency.


2019 ◽  
Vol 19 (8) ◽  
pp. 624-646 ◽  
Author(s):  
Yogita Bansal ◽  
Manjinder Kaur ◽  
Gulshan Bansal

Structural resemblance of benzimidazole nucleus with purine nucleus in nucleotides makes benzimidazole derivatives attractive ligands to interact with biopolymers of a living system. The most prominent benzimidazole compound in nature is N-ribosyldimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12. This structural similarity prompted medicinal chemists across the globe to synthesize a variety of benzimidazole derivatives and to screen those for various biological activities, such as anticancer, hormone antagonist, antiviral, anti-HIV, anthelmintic, antiprotozoal, antimicrobial, antihypertensive, anti-inflammatory, analgesic, anxiolytic, antiallergic, coagulant, anticoagulant, antioxidant and antidiabetic activities. Hence, benzimidazole nucleus is considered as a privileged structure in drug discovery, and it is exploited by many research groups to develop numerous compounds that are purported to be antimicrobial. Despite a large volume of research in this area, no novel benzimidazole derived compound has emerged as clinically effective antimicrobial drug. In the present review, we have compiled various reports on benzimidazole derived antimicrobials, classified as monosubstituted, disubstituted, trisubstituted and tetrasubstituted benzimidazoles, bisbenzimidazoles, fused-benzimidazoles, and benzimidazole derivative-metal complexes. The purpose is to collate these research reports, and to generate a generalised outlay of benzimidazole derived molecules that can assist the medicinal chemists in selecting appropriate combination of substituents around the nucleus for designing potent antimicrobials.


2018 ◽  
Vol 18 (9) ◽  
pp. 797-807 ◽  
Author(s):  
Paula dos Passos Menezes ◽  
Francielly de Oliveira Araujo ◽  
Tatianny Araujo Andrade ◽  
Igor Araujo Santos Trindade ◽  
Heitor Gomes de Araujo-Filho ◽  
...  

Background: Some research studies have shown that Lippia pedunculosa essential oil (EOLP) has interesting biological activities. However, its low water solubility is the main challenge to achieve its therapeutic potential. In this context, Cyclodextrins (CDs) have been widely used in order to overcome this problem due to your capability to improve the physicochemical properties of drugs. Objective: In this perspective, the main goal of this study was to investigate how the improvement of the physicochemical properties of inclusion complexes (EOLP and β-CD) enhance the antinociceptive effect in mice. Methods: To achieve that, we prepared samples by Physical Mixture (PM), Paste Complexation (PC) and Slurry Complexation (SC) methods, followed by their physicochemical characterization. In addition, it was evaluated if the use of β-CD enhances the antinociceptive effect of EOLP in mice. Results: The analysis showed that rotundifolone (72.02%) was the major compound of EOLP and we found out based on DSC results that β-CD protected it from oxidation. In addition, TG techniques demonstrated that the best inclusion methods were PC and SC, due to their greater weight loss (10.8 and 11.6%, respectively) in the second stage (171-312°C), indicating that more complexed oil was released at the higher temperature than oil free. Other characteristics, such as changes in the typical crystalline form, and reduced particle size were observed by SEM and laser diffraction, respectively. The SC was the most effective complexation method, once the presence of rotundifolone was detected by FTIR. Based on that, SC method was used in all mice tests. In this regard, the number of paw licks was reduced for both compounds (all doses), but EOLP was more effective in reducing the nociceptive behavior. Conclusion: Therefore, CDs seem not to be a good tool to enhance the pharmacological properties of EOs rich in peroxide compounds such as rotundifolone.


Sign in / Sign up

Export Citation Format

Share Document