scholarly journals ANTIMICROBIAL ACTIVITY OF SOME THAI AROMATIC PLANTS AGAINST ORAL PATHOGENS INDUCING HALITOSIS

Author(s):  
Plernpit Yasin ◽  
Phenphicha Wanachantararuk ◽  
Jidaphatinoi Jidaphatinoi ◽  
Kanchana Dumri

Objective: The objective of the present work is to analyze that the extracts of 25 Thai aromatic plants used in Thai food recipes were subjected to evaluated antimicrobial activity against Fusobacterium nucleatum and Streptococcus mutans which have been known as bacterial inducing halitosis.Methods: Disk diffusion method, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) by broth microdilution were used to determine the antibacterial activity.Results: The results revealed that three plant extracts, namely Piper betle Linn., Eupatorium stoechadosmum Hance, and Alpinia galangal (L.) Wild can inhibit the growth of both halitosis inducing bacteria with strong activity. Among these, the extract of P. betle Linn. is the most effective in inhibiting both bacteria followed by E. stoechadosmum Hance and A. galangal (L.) Wild, respectively. The MIC (mg/ml) values of the extracts which can inhibit F. nucleatum were ranging from 1.56 to 12.50, and the MBCs (mg/ml) values were ranging from 3.125 to 25.00. In addition, the MICs and MBCs of the extracts which can inhibit S. mutans were found that 1.56–25.00 and 3.125–50.00, respectively.Conclusion: The extracts obtained from P. betle, A. galangal, and E. stoechadosmum displayed good activity against F. nucleatum and S. mutans and these extracts could be a potential source of new antimicrobial agents.

Author(s):  
Plernpit Yasin ◽  
Phenphicha Wanachantararuk ◽  
Jidaphatinoi Jidaphatinoi ◽  
Kanchana Dumri

Objective: The objective of the present work is to analyze that the extracts of 25 Thai aromatic plants used in Thai food recipes were subjected to evaluated antimicrobial activity against Fusobacterium nucleatum and Streptococcus mutans which have been known as bacterial inducing halitosis.Methods: Disk diffusion method, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) by broth microdilution were used to determine the antibacterial activity.Results: The results revealed that three plant extracts, namely Piper betle Linn., Eupatorium stoechadosmum Hance, and Alpinia galangal (L.) Wild can inhibit the growth of both halitosis inducing bacteria with strong activity. Among these, the extract of P. betle Linn. is the most effective in inhibiting both bacteria followed by E. stoechadosmum Hance and A. galangal (L.) Wild, respectively. The MIC (mg/ml) values of the extracts which can inhibit F. nucleatum were ranging from 1.56 to 12.50, and the MBCs (mg/ml) values were ranging from 3.125 to 25.00. In addition, the MICs and MBCs of the extracts which can inhibit S. mutans were found that 1.56–25.00 and 3.125–50.00, respectively.Conclusion: The extracts obtained from P. betle, A. galangal, and E. stoechadosmum displayed good activity against F. nucleatum and S. mutans and these extracts could be a potential source of new antimicrobial agents.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


1970 ◽  
Vol 46 (4) ◽  
pp. 513-518 ◽  
Author(s):  
V Subhadradevi ◽  
K Asokkumar ◽  
M Umamaheswari ◽  
AT Sivashanmugam ◽  
JR Ushanandhini ◽  
...  

Since ancient times plant as sources of medicinal compounds have continued to play a dominant role in the maintenance of human health. To treat chronic and infectious diseases plants used in traditional medicine contain a wide range of ingredients. In this regard, Cassia auriculata L. (Caesalpiniaceae) is widely used in Ayurvedic medicine as a tonic, astringent and as a remedy for diabetes, conjunctivitis, ulcers, leprosy, skin and liver diseases. The aim of present study was to evaluate the antimicrobial activity of ethanolic extract of Cassia auriculata leaves and flowers (CALE & CAFE). CALE and CAFE exhibited broad spectrum antimicrobial activity against standard strains of Staphylococcus aureus, Escherichia coli and Bacillus subtilis and exhibited no antifungal activity against standard strains of Candida albicans and Aspergillus niger. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) was carried out for CALE and CAFE. The results obtained in the present study indicate that the CALE and CAFE can be a potential source of natural antimicrobial agents. Key words: Cassia auriculata; Antimicrobial activity; Agar well diffusion method. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9600 BJSIR 2011; 46(4): 513-518


2018 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Ljiljana P. Stanojević ◽  
Milorad D. Cakić ◽  
Jelena S. Stanojević ◽  
Dragan J. Cvetković ◽  
Bojana R. Danilović

Wild cyclamen tubers (Cyclamen purpurascens Mill.) (mountain Kukavica, Southeast Serbia) were used as material for extraction in this study. Aqueous extract was obtained by reflux extraction on boiling temperature with hydromodulus 1:20 m/v during 180 minutes. The total phenolic content was determined spectrophotometrically by the method of Folin-Ciocalteu, and the total flavonoids content by method with AlCl3. The antioxidant activity of extract was investigated spectrophotometrically by DPPH and ABTS test. Disc-diffusion method was used for antimicrobial activity investigation on the following pathogenic microorganisms: Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Pseudomonas aeruginosa and Klebsiella pneumoniae. The content of total phenols was 8.27 mg GAE/g dry extract while the total flavonoid content was 11.51 mg RE/g dry extract. The extract concentrations required to neutralize 50% of the initial concentration of DPPH radicals (EC50) after 20 minutes incubation and immediately after adding DPPH radical solution were 0.413 and 2.0 mg/ml, respectively, while concentrations of extract required to neutralize 50% of the initial ABTS radicals concentration is 0.743 mg/ml. The extract showed the highest antimicrobial activity on bacteria Staphylococcus aureus. The presented results indicate that cyclamen tubers extract is a potential source of natural antioxidants and antimicrobial agents.


Author(s):  
Ahmad Jafari ◽  
Ramin Mazaheri Nezhad Fard ◽  
Sima Shahabi ◽  
Farid Abbasi ◽  
Golshid Javdani Shahedin ◽  
...  

Background and Objectives: Silver nanoparticles (Ag-NPs) are potent antimicrobial agents, which have recently been used in dentistry. The aim of the current study was to optimize antimicrobial activity of Ag-NPs used in preparing irre- versible hydrocolloid impressions against three microorganisms of Escherichia coli, Streptococcus mutans and Candida albicans. Materials and Methods: After assessing antimicrobial activity of the compound using disk diffusion method, three parame- ters of concentration of Ag-NPs (250-1000 ppm), ratio of hydrocolloid impression material powder to water (0.30-0.50) and time of mixing (20.0-60.0 s), affecting antimicrobial activity of irreversible hydrocolloid impression materials against the three microorganisms, were optimized. This combined process was successfully modeled and optimized using Box-Behnken design with response surface methodology (RSM). Decreases in colony number of E. coli, S. mutans and C. albicans were proposed as responses. Results: Qualitative antimicrobial assessments respectively showed average zone of inhibition (ZOI) of 3.7 mm for E. coli, 3.5 mm for S. mutans and 4 mm for C. albicans. For all responses, when the mixing duration and powder-to-water ratio increased, the circumstances (mixing duration of 59.38 s, powder-to-water ratio of 0.4 and Ag-NP concentration of 992 response) increased. Results showed that in optimum ppm, the proportion of decreases in colony numbers was maximum (89.03% for E. coli, 87.08% for S. mutans and 74.54% for C. albicans). Regression analysis illustrated a good fit of the ex- perimental data to the predicted model as high correlation coefficients validated that the predicted model was well fitted with data. Values of R2Adj with R2Pred were associated to the accuracy of this model in all responses. Conclusion: Disinfection efficiency dramatically increased with increasing of Ag-NP concentration, powder-to-water ratio and mixing time.


Author(s):  
V. V. Pantyo ◽  
M. M. Fizer ◽  
O. I. Fizer ◽  
G. M. Koval ◽  
E.M. Danko

Annotation. The development and rapid pace of the spread of resistance to antimicrobial agents predetermines the search for new methods of counteracting pathogenic and conditionally pathogenic microorganisms. In this context, studies of the antimicrobial activity of newly synthesized chemicals, which in the future can be considered as candidates for antiseptic and disinfectants, are relevant. The aim of the work was to determine the antimicrobial activity of new ionic associates based on the surface-active cetylpyridinium cation with respect to certain opportunistic microorganisms. The antimicrobial activity of four ionic associates based on the cetylpyridinium cation with respect to clinical isolates of E. coli, P. vulgaris, K. pneumonia, P. aeruginosa, S. aureus, as well as the collection test strains of S. aureus ATCC 25923, E. coli ATCC 29522 and P. aeruginosa ATCC 27853 was studied. Screening studies were performed by the disk diffusion method. With substances that showed an antimicrobial effect, quantitative studies were carried out by the method of serial macro-dilutions in a liquid nutrient media. Screening studies revealed the antibacterial activity of the substances against E. coli ATCC 25923, E. coli (clinical isolate), P. vulgaris and K. pneumonia. With these microorganisms quantitative studies were carried out with the determination of the minimum inhibitory and minimum bactericidal concentrations. The most pronounced antimicrobial activity for the investigated microflora was shown by tetraphenylborate and cetylpyridinium perchlorate. The MIC and MBC values of these substances ranged between 1.625–3.125 mmol / L and 3.125–12.5 mmol / L, respectively. The studied associates showed high antimicrobial activity against representatives of the Enterobacteriaceae family in in vitro studies. Promising is the further study of the effect of the counter-anion associates of cationic surfactants on the biofilm formation of conditionally pathogenic microorganisms.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (07) ◽  
pp. 5-9
Author(s):  
R. G Ingle ◽  
◽  
S. J. Wadher

A set of ten new 2,3-diphenyl-6-sulfonamido quinoxaline derivatives was synthesized and screened for antimicrobial activity by disk diffusion method. Test derivatives R3, R5, R’’1 and R’’2 show promising results against bacterial strains S. aureus gram positive and E. coli gram negative organism with the concentration 1000 μg/mL in disk diffusion method. Rest of the derivatives show sensitivity against the same organisms. All the synthesized derivatives were confirmed by their spectral data.


2019 ◽  
Vol 15 (7) ◽  
pp. 813-832 ◽  
Author(s):  
Sunil Harer ◽  
Manish Bhatia ◽  
Vikram Kawade

Background: Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis in micro-organisms. A large number of drugs have been designed to inhibit microbial DHFR but over the period of time, some drugs have developed resistance and cross reactivity towards the enzyme. Over the past few decades, benzimidazoles, triazoles and their derivatives have been grabbing the attention of the synthetic chemists for their wide gamut of antibacterial and antifungal activities targeting microbial protein DHFR. Objective: Our goal behind present investigation is to explore benzimidazoles class of drugs as microbial DHFR inhibitors by studying ligand-receptor binding interactions, in vitro enzyme inhibition assay and confirmation of anti-microbial activity against selected pathogenic microorganisms. Methods: A library containing thirty novel 2,6-disubstituted 1H-benzimidazoles was synthesized by one pot condensation of o-nitro aniline or 2,4-dinitro aniline with series of aldehydes or acetophenones using Na2S2O4 or SnCl2 respectively and reflux for 5-6hr. Structures of compounds have been confirmed by spectroscopic methods as 1H and 13C NMR, FT-IR and MS. In vitro DHFR inhibition study was performed by using Epoch microplate reader and IC50 of the test compounds was compared with Trimethoprim. In vitro antimicrobial activity was performed against selected clinical pathogens by agar disk diffusion method and MIC (µg/mL) was reported. Results: Moderate to good level of DHFR inhibition was observed with IC50 values in the range of 7-23 µM. Compounds B1, B19, B22, B24 and B30 expressed 1.1 to 1.4 folds more prominent DHFR inhibitory activity as compared to standard Trimethoprim. Remarkable antimicrobial activity was exhibited by B1, B19, B22, B24 and B30. Molecular docking study revealed perfect binding of test ligands with key amino acids of DHFR as Phe31, Ile94, Ile5, Asp27, Gln32 and Phe36. Conclusion: Nature of 1H-benzimidazole substituents at position 2 and 6 had influence over magnitude and type of molecular binding and variation in the biological activity. The present series of 1H-benzimidazoles could be considered promising broad-spectrum antimicrobial candidates that deserve in future for preclinical antimicrobial evaluation and development of newer antimicrobial agents targeting microbial DHFR.


2021 ◽  
pp. 030157422098818
Author(s):  
Cheepurupalli Meher Vineesha ◽  
D Praveen Kumar Varma ◽  
P Arun Bhupathi ◽  
CV Padma Priya ◽  
M Anoosha ◽  
...  

Aim and Objectives: To compare and evaluate the antibacterial efficacy of various nanoparticles incorporated in orthodontic primer with that of conventional antimicrobial agents at different concentrations on Streptococcus mutans ( S. mutans) strain. Materials and Methods: Transbond XT Primer was mixed with 2.5% and 5% benzalkonium chloride (BAC), 0.2% and 2.5% chlorhexidine, 1% and 3% titanium dioxide (TiO2) nanoparticles, 0.2% and 0.5% nanohydroxyapatite, and 0.2% and 0.5% silica-doped nanohydroxyapatite powders. Antibacterial activity against S. mutans for all the materials was evaluated by the disk diffusion method for periods of 48 (T1) and 72 (T2) hours. Results: There was a significant increase in the antimicrobial activity of the orthodontic primer modified by the addition of antibacterial agents. The highest zone of inhibition against S. mutans was observed for silica-doped nanohydroxyapatite of 0.5% (11.03 mm) among all the nanoparticles, which was similar to the conventional antibacterial agents used in our study. Conclusions: • Among all the groups, BAC at 5% concentration showed the highest antimicrobial activity, and the least activity was exhibited by 1% TiO2 nanoparticles. • Silica-doped nanohydroxyapatite at 0.5% expressed the greatest antibacterial activity among all the nanoparticles. • All the materials showed sustained antibacterial activity even after 72 hours.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 828-832
Author(s):  
Ramesh G ◽  
Pratyusha ◽  
Sivasankari S ◽  
Malini Evangeline Rose

The research was assessed to evaluate the efficacy of fresh juice of Psidium guajava and Mentha piperita against selected aerobic and anaerobic bacterial strain. The fresh juice was extracted and evaluated for its antimicrobial activity on anaerobic pathogens like Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg) and Prevotella intermedia (Pi). Antimicrobial activity was evaluated by the disc diffusion method and minimum inhibitory concentration. Long before since from the ancient time, humankind depended on the trees and herbs for medicines to alleviate ailments, search for better health, fragrance, flavours and food. In ancient time human beings depended on animals and plants for his food, shelter demand etc. Over 5000 years, peoples of India and China kept on the use of plants for food as well as to protect from disease. Most of the dental problems are due to microorganism (Oral Pathogens) like Fusobacterium, Actinomyces, Porphyromonas, Prevotella, Eubacterium, Bacteroids, Staphylococcus, Streptococcus, Enterococcus etc. Microbial debridement might uproot pathogenic living being due to their area. Previously, subepithelial gingival tissues, crevicular epithelial cells, other anatolian dialect features entangling sufficient defiant. The results indicate that Psidium guajava and Mentha piperita leaves shows significant Antimicrobial activity due to the presence of flavonoids. This work is more useful in health Mentha Piperita Fresh Leaves Juice for Perio Pathogens.


Sign in / Sign up

Export Citation Format

Share Document