scholarly journals ISOLATION, SCREENING AND CHARACTERIZATION OF ANTIBIOTIC PRODUCING ACTINOMYCETES FROM KAPULUPPADA PLASTIC WASTE DUMPING YARD, VISAKHAPATNAM

Author(s):  
Midhun Kumar Duddu ◽  
Girijasankar Guntuku

Objective: To isolate, screen and characterize antibiotic producing actinomycetes from Kapuluppada plastic waste dumping yard, Visakhapatnam.Methods: A total of 12 soil samples were collected, serially diluted and spread on starch casein agar supplemented with Rifampicin and Cycloheximide for inhibition of bacteria and fungi, respectively. Cross-streak method was used to check the antagonistic activity of isolated actinomycetes against bacteria and fungi. Crude extracts from submerged state fermentation were used for the production of antimicrobial compounds. Agar well diffusion method was used for antimicrobial activity of crude extracts against test organisms. The isolates were characterized by morphological, physiological and biochemical methods.Results: A total of 110 actinomycete isolates were isolated from plastic waste dumping yard. All isolates had shown antimicrobial activity against one or more tested bacteria/fungi. The crude extract of the isolates PD66 (12.2 mm), PD85 (11.5 mm) were most active against methicillin-resistant Staphylococcus aureus, PD4 (14.1 mm), PD66 (15.6 mm) were active against Pseudomonas aeruginosa, whereas the extracts of PD10 (19.2 mm), PD47 (19.8 mm), PD106 (19.1 mm) were active against Candida albicans, PD10 (14.6 mm), PD82 (15.7 mm) active against Saccharomyces cereviciae. The isolates had shown varying morphological, physiological and biochemical characteristics.Conclusion: The actinomycetes isolated from Kapuluppada plastic waste dumping yard were found to be most promising microorganisms for the production of antibacterial and antifungal antibiotics. 

Author(s):  
Ikpefan E. O. ◽  
Enwa F. O. ◽  
Emebrado O.

This study was carried out as a result of the belief that certain medicinal plants have antimicrobial activity against pathogenic bacteria and fungi species, hence the in vitro antimicrobial activity of the extract and fractions of Euphorbia graminea was performed against bacteria (Staphyloccocus aureus, Escherichia coli, Pseudomonas aeruginosa) and fungal (Candida albican) non-clinical isolates. The methanol extract of Euphorbia graminea was fractionated via solvent-solvent partitioning and vacuum liquid chromatographic techniques and the corresponding fractions were tested for phytochemicals and were biologically tested against the organisms employing the agar well diffusion method. While the extract and partitioned fractions were tested at concentrations between 4.69-300 mg/mL, the vlc subfractions were tested at 12.50-200 mg/mL against the organisms. The MIC of the active vlc subfractions was also tested (9.38-37.5 mg/mL). The alkaloids as well as glycosides, tannins, terpenes and steroids were detected among the extracts and fractions of E. graminea. The extract showed mild activities against the test organisms with the highest zone of inhibition of 7.00 mm recorded at 300 mg/mL against S.aureus. The activities of both extract at 300 mg/mL, showed notable increase against the organisms used, with zones of inhibition of the aqueous extract been 10.50 and 9.50mm and for the chloroform extract, 16.50 and 13.05mm (S. aureus and E. coli respectively). The vlc sub-fraction 6-8 (C) among the other subfractions was more potent against S. aureus, E. coli and C. albican as 16.50, 12.00 and 0.50 mm zones of inhibition were recorded at 100 mg/mL. The zones of inhibition against these organisms later increased to 20.00, 18.50 and 15.00 mm at 200 mg/mL. This study has highlighted the fact that the plant E. graminea has antimicrobial activity which occurs more in the partitioned chloroform and its chromatographic vacuum liquid subfraction (6-8) that gave the highest activity. However, in order to isolate the active biological components and to determine their safety in drug production, further studies are needed.


2014 ◽  
Vol 40 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Sinar David Granada García ◽  
Antoni Rueda Lorza ◽  
Carlos Alberto Peláez

Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.


2016 ◽  
Vol 11 (2) ◽  
pp. 248 ◽  
Author(s):  
Kathirvel Poonkodi ◽  
Subban Ravi

<p class="Abstract">The present study was aimed to evaluate the phytochemical screening and antimicrobial activity of the petroleum ether and methanol extracts from the mature leaves of <em>Richardia scabra</em> from India. Disc diffusion method was used to determine the zone inhibition of the tested samples for antibacterial and agar plug method was used to determine the antifungal activity, while the microtube-dilution technique was used to determine the minimum inhibitory concentration. Both extracts showed significant antibacterial and antifungal activities when tested against 10 bacterial and four fungal strains. The minimum inhibitory concentrations of the methanol extract of<em> R. scabra</em> ranged between 12.5–100 μg/mL for bacterial strains. Alkaloids, steroids, flavonoids, fatty acids, terpenoids and simple sugar were detected as phytoconstituents of extracts. To the best of our knowledge, this is the first report against antimicrobial activity of common weed species <em>R. scabra</em> found in India.</p><p> </p>


Author(s):  
PAULA ALEJANDRA GIRALDO VILLAMIL ◽  
ANDRÉS CAMILO ANDRADE BURBANO ◽  
LUIS POMBO OSPINA ◽  
JANETH ARIAS PALACIOS ◽  
ÓSCAR EDUARDO RODRÍGUEZ AGUIRRE

Objective: The objective of the study was to determine the antimicrobial activity of leaf and flower extract in Chromolaena scabra (L. f.) R.M. King and H. Rob., against selected strains of bacteria and fungi. Methods: The agar diffusion method with plate perforation was developed; the microorganisms used were strains of Staphylococcus aureus and Escherichia coli, Aspergillus niger, and Penicillium digitatum. Rifampicin was used as a positive control. The evaluation was performed by measuring the diameter of the growth inhibition zones around the holes. The inhibitory effect of the plant extracts was obtained by its efficiency compared to the positive control. A comparison with fluconazole and ketoconazole was performed to determine how much of the extract is required to cause inhibition of fungal growth from the standard. Results: IC50 was determined by relating the ln of mass evaluated with respect to the square of the inhibition halo; ethanolic extracts of leaves and flowers of petroleum ether with IC50 values of 85.8 mg/ml and 50.3 mg/ml showed the highest inhibitory effect against S. aureus; the extract of petroleum ether and ethanol from leaves with IC50 of 64 mg/ml and 60 mg/ml, respectively. They were effective with A. niger. Leaf petroleum ether extract showed the best relative antifungal activity against A. niger with respect to fluconazole equivalent to 459.51 when fluconazole is 1.0. Conclusion: The extracts with high potential to inhibit the growth of microorganisms were determined to be ether flowers of petroleum and ethanol leaf extracts.


2021 ◽  
Vol 1 (1) ◽  
pp. 008-013
Author(s):  
Ere Diepreye ◽  
Eboh Abraham Sisein ◽  
Ovuru German Salvation

Solenostemon monostachyus P. Beauv (Lamiaceae family) is an important herb that is widespread in West and Central Africa.The leaves are used in various decoctions traditionally to treat diseases most especially microbial infections associated with the foot. In this study, the phytochemicals (qualitative and quantitative) of the plant were determined. The antimicrobial and antioxidant activities of the plant were also evaluated by standard methods. Results showed alkaloids, tannins, flavonoids, saponins phenolics in the methanolic extract of Solenostemon monostachyus. Cardiac glycosides and steroids absent in the methanolic extract were found present in the dichloromethane extract. The quantitative phytochemicals recorded were alkaloids (18.05 ± 0.87%), saponins (11.3 ± 0.56 %), tannins (3.3 ± 0.19 GAE). The antioxidant activity testing showed that the methanolic extract has higher DPPH scavenging ability over dichloromethane extract and standard ascorbic acid. In the antimicrobial activity testing, the cup-plate diffusion method was used and the result showed that the dichloromethane extract inhibited the growth of Bacillus species at concentrations 100 mg/ml, 50 mg/ml, 20 mg/ml and 10 mg/ml while methanolic extract inhibited the growth of bacillus species only at 100 mg/ml with 5 mm zone of inhibition. However, both methanol and dichloromethane extract showed no antimicrobial activity on the other test organisms such as Psudomonas aeruginosa, Escherichia coli and Staphylococcus aureus. In conclusion both methanolic and dichloromethane extracts of Solenostemon monostachyus are potential sources of antimicrobial and antioxidant.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmed M. Amer

The discovery of novel and more efficient antimicrobial agents from natural sources like plants is one of the most important ways through which the growing threat of antibiotic-resistant pathogens can be overcome. Herein, we report the potential antimicrobial activity ofCichorium endiviaL.subsp.pumilum. Different concentrations of various solvent extracts prepared from several parts of chicory were tested for their antimicrobial effect against a panel of microorganisms. The antimicrobial activity was analyzed using the well diffusion method, where zones of inhibition were used as indicators of antimicrobial activity. The results indicated the superiority of seed extracts over both leaf and root extracts. Methanol extracts showed higher activity compared with chloroform and water extracts. Increased solvent extract concentration was accompanied by a parallel increase in the diameter of the inhibition zone. Gram-positive bacteria were found to be more sensitive than Gram-negative bacteria and fungi. On a whole, the highest observed inhibition zones (21.3 ± 0.6 and 20.1 ± 0.4 mm) were recorded with the methanolic extract of chicory seeds againstS. aureusandB. cereus, respectively.These results offer insights into the antimicrobial potency of this Egyptian local plant and provide a basis for further phytochemical and pharmacological research.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Anwar Ali Chandio ◽  
Ayaz Ali Memon ◽  
Shahabuddin Memon ◽  
Fakhar N. Memon ◽  
Qadeer Khan Panhwar ◽  
...  

Present study deals with the synthesis of the p-tert-butylcalix[4]arene diamide derivative as ligand (L) and its Fe3+ complex, followed by its characterization using TLC and FT-IR, while UV-Vis and Job’s plot study were performed for complex formation. Antimicrobial activity of the derivative (L) and its metal complex was carried out by the disc diffusion method against bacteria (Escherichia coli and Staphylococcus albus) and fungi (R. stolonifer). Different concentrations of the derivative (L) (6, 3, 1.5, 0.75, and 0.37 μg/mL) and its Fe3+ complex were prepared, and Mueller–Hinton agar was used as the medium for the growth of microorganisms. Six successive dilutions of the derivative (L) and Fe3+ complex were used against microorganisms. Two successive dilutions (6 and 3 μg/mL) of the derivative (L) showed antibacterial action against both Gram-positive and Gram-negative bacteria. In addition, three successive dilutions (6, 3, and 1.5 μg/mL) of the derivative (L) showed antifungal activity. However, all of six dilutions of the Fe3+ complex showed antimicrobial activity. Derivative (L) showed 3 and 1.5 μg/mL minimum inhibitory concentrations (MIC) against bacteria and fungi, respectively. On the contrary, its Fe3+ complex showed 0.37 μg/mL value of MIC against bacteria and fungi. Hence, Fe3+ complex of the derivative (L) was found to be a more effective antimicrobial agent against selected bacteria and fungi than the diamide derivative (L).


2009 ◽  
Vol 37 (05) ◽  
pp. 855-865 ◽  
Author(s):  
Supawadee Umthong ◽  
Songchan Puthong ◽  
Chanpen Chanchao

Propolis is one of the natural bee products which has long been used as a crude preventative and prophylactic medicine, and has been reported to possess antibacterial, antiviral, anti-inflammatory, antioxidative and anticancer properties. Propolis of the stingless bee, Trigona laeviceps, was extracted by water or methanol at 35% (w/v) yielding a crude water or a methanolic extract at 60 and 80 mg/ml, respectively, which is 17.1 and 22.9% (w/w) of the total propolis, respectively. The antimicrobial activity of both crude extracts was assayed on four selected pathogenic microbes by using the agar well diffusion method. The results suggested that both water and methanolic crude extracts have some antimicrobial activities, water extract has greater antimicrobial activity than methanolic extract. The relative order of sensitivity of the four microbes were, however, the same between the two extracts from the most to least sensitive, S. aureus > E. coli ≫ C. albicans ⋙ A. niger, with indeed no observed growth inhibition of A. niger at all. Antiproliferative and cytotoxic affects were tested on the colon carcinoma cell line, SW620, using the three parameters: (1) MTT assay; (2) cell morphology; and (3) the fragmentation of genomic DNA. The water extract of propolis showed a higher antiproliferative activity than that of methanolic extract to SW620 cells, additionally both appeared to cause cell death by necrosis.


Bio-Research ◽  
2020 ◽  
Vol 18 (2) ◽  
Author(s):  
AE Ajiboye ◽  
BA Hammed

Parkia biglobosa (Jacq) is a wild leguminous plant found in North-Central zone of Nigeria with high calorific value, essential proteins, fatty acids, and vitamins. The study investigated the antimicrobial activity of crude extracts of fermented and unfermented P. biglobosa seeds on selected clinical microbial isolates namely, Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. P. biglobosa seeds were obtained from Oja-Oba market in Ilorin, Kwara State, Nigeria. The samples were pre-treated and pulverized into powder. The extraction was achieved with acetone and water and qualitative phytochemical analysis was performed following standard procedures. The antimicrobial activity of the extracts against the isolates was determined by agar well diffusion method. Qualitative phytochemical screening of the crude extracts showed the presence of tannins, alkaloid, flavonoid, saponin and glycosides. P. aeruginosa was sensitive to the aqueous extract of fermented seeds having a zone of inhibition of 14.00±1.00mm while for unfermented seeds it was 10.00±2.00 mm at 100 mg/ml. The acetone extracts of both fermented and unfermented seeds revealed antibacterial activity against P. aeruginosa with zone of inhibition of 17.00±3.00 mm and 18.00±0.00 mm respectively. In conclusion, the crude extracts of the fermented and unfermented P. biglobosa seeds at a concentration of 75 and 100 mg/ml respectively have antimicrobial effect on the clinical isolates.  


Sign in / Sign up

Export Citation Format

Share Document