scholarly journals SYNTHESIS, CHARACTERIZATION, BIOLOGICAL EVALUATION AND DOCKING OF SOME NOVEL SUBSTITUTED 1, 3-THIAZINE DERIVATIVES

Author(s):  
Ravindar Bairam ◽  
Srinivasa Murthy Muppavarapu ◽  
Sivan Sreekanth

Objective: Chalcones and their heterocyclic analogs represent an important class of small molecules which have a wide range of pharmacological activities. Therefore, in this study, synthesis and anticonvulsant and antimicrobial activities of some new 1, 3-thiazines have been extensively discussed.Methods: The reaction mixture of 4-tert-butylcyclohexanone on Claisen-Schmidt condensation with various aromatic aldehydes in the presence of dilute sodium hydroxide afforded the corresponding chalcones. Further, these compounds were subjected to cocondensation with thiourea, in the presence of isopropanol, catalyzed by aqueous potassium hydroxide to form 4-aryl 8-arylidene-5, 6-dihydro-2-imino-6-methyl-4H, 7H-(1, 3) benzothiazines. The structures of the newly synthesized compounds have been established on the basis of their spectral analysis. The newly synthesized compounds have been tested for their biological screening. Antimicrobial activity by cup plate agar diffusion method and antiepileptic activity by pentylenetetrazole (PTZ) induced seizures model, using diphenyl hydantain as standard, and also they are subjected to molecular properties prediction, toxicity, drug-likeness, lipophilicity and solubility parameters determination were done by using Osiris program, Molsoft, Prototox and ALOGPS 2.1 software. The binding mode of the synthesized compounds with active protein site has been predicted using docking method.Results: Most of the compounds have shown good anticonvulsant as well as antimicrobial activities, but it is less than the standard drugs. 1, 3-thiazines derivatives were more potent, and among them, compounds TB5 andTB7 were the most active compounds in these series; TB5 whichcontains isopropyl phenyl moiety, was shown moderate potent activity with onset of convulsion at 14.1 min and TB7 containing 3, 4, 5-trimethoxyphenyl substituents on the thiazine moiety was more potent as it has prolonged the onset of convulsions by 18.7 min. Whereas in the case of antimicrobial activity of the compounds, from the results we have observed that TB5 have been shown greatest antimicrobial activity in all the bacterial and fungal strains, TB2 also shown superior activity, the others have been shown good antimicrobial activity.Conclusion: According to the activity studies, it is observed that the synthesis and antimicrobial as well as anticonvulsant activities of novel 1, 3-thiazine derivatives have been shown better activity. Moreover molecular docking results give an insight into how further modification of the lead compound can be carried out for higher inhibitory activity. In particular, compounds with electron withdrawing substituents along with lipophilic methoxyl and isopropyl groups were more potent.

2020 ◽  
Vol 32 (11) ◽  
pp. 2887-2892
Author(s):  
R. IDAMALARSELVI ◽  
G. SWETHA ◽  
C. RAMACHANDRA RAJA ◽  
R. PRISCILLA

This study focused on kinetic modelling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the experimental kinetic curves for the thermal decomposition of (E)-4-Bromo-2-[(phenylimino)methyl]- phenol (4B2PMP) crystal. The crystal was grown by a slow evaporation method. The cell parameters and crystalline perfection of the grown crystal were studied by single and powder X-ray diffractions. Thermal stability and phase change of 4B2PMP crystal were analyzed by TG/DTA. The microhardness study has revealed the soft nature. UV-visible analysis reveals the wide range of optical window of the optical transmission from 199 nm to 1100 nm. The bandgap of the crystal is found to be 3.24 eV. The FESEM of the crystals was spherically shaped and consisted of a core-shell structure with internal aggregates. The antimicrobial activity of title crystal was tested against different microorganisms by disc diffusion method. The results reveal that the title compound have effective antimicrobial activities.


1970 ◽  
Vol 46 (4) ◽  
pp. 513-518 ◽  
Author(s):  
V Subhadradevi ◽  
K Asokkumar ◽  
M Umamaheswari ◽  
AT Sivashanmugam ◽  
JR Ushanandhini ◽  
...  

Since ancient times plant as sources of medicinal compounds have continued to play a dominant role in the maintenance of human health. To treat chronic and infectious diseases plants used in traditional medicine contain a wide range of ingredients. In this regard, Cassia auriculata L. (Caesalpiniaceae) is widely used in Ayurvedic medicine as a tonic, astringent and as a remedy for diabetes, conjunctivitis, ulcers, leprosy, skin and liver diseases. The aim of present study was to evaluate the antimicrobial activity of ethanolic extract of Cassia auriculata leaves and flowers (CALE & CAFE). CALE and CAFE exhibited broad spectrum antimicrobial activity against standard strains of Staphylococcus aureus, Escherichia coli and Bacillus subtilis and exhibited no antifungal activity against standard strains of Candida albicans and Aspergillus niger. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) was carried out for CALE and CAFE. The results obtained in the present study indicate that the CALE and CAFE can be a potential source of natural antimicrobial agents. Key words: Cassia auriculata; Antimicrobial activity; Agar well diffusion method. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9600 BJSIR 2011; 46(4): 513-518


2008 ◽  
Vol 73 (7) ◽  
pp. 683-690 ◽  
Author(s):  
Dipti Dodiya ◽  
Amit Trivedi ◽  
Samir Jarsania ◽  
Shailesh Vaghasia ◽  
Viresh Shah

The synthesis of substituted pyrazolo[3',4':4,5]thieno[2,3-d]pyrimidin-8-ones (IIIa-j) from 5-amino-3-methyl-1H-thieno[3,2-c]pyrazole-6-carbonitrile (II) is described. The key compound II was synthesized from (5-methyl- -2,4-dihydro-3H-pyrazol-3-ylidene)malononitrile I via the Gewald reaction. The synthesis of the title compounds IIIa-j was accomplished by condensation of II with different aromatic aldehydes. The newly synthesized heterocyles were characterized by elemental analysis, IR, 1H-NMR, 13C-NMR and mass spectroscopic investigation. All the newly synthesized compounds were evaluated for antimicrobial activity against a variety of bacterial strains. .


2016 ◽  
Vol 6 (2) ◽  
pp. 70-76
Author(s):  
Soumia Keddari ◽  
Narimen Benaoum ◽  
Yasmina Mokhtaria Boufadi ◽  
Mansouria Belhocine ◽  
Ali Riazi

Medicinal plants have been used for countries as cures for human diseases because they contain components of therapeutic value. Among these medi-cinal plants, Ammi visnage which have an immense reservoir of potential compounds attributed to the secondary metabolites which have the advan-tage of being of great diversity of chemical structure and have a very wide range of biological activities. The objectives of the present work were to stu-dy the antioxidant and antimicrobial activity of phenolic compounds ex-tracted from A. visnaga L. Its extraction is performed by two methods, etha-nol extraction and water extraction. The results showed that A. visnaga L.. ethanolic extract contains a mixture of phytochemical classes as polyphenol, flavonoids and revealed that this plant has high antioxidant activity (IC50 0.069 mg/ml). Regarding the antimicrobial activity results expressed by the diameter of the inhibition zones by diffusion method AWDT, the most signifi-cant inhibition was observed against to Staphylococcus aureus (12 mm) to the ethanol extract at concentration of 100mg / ml. Thus the aqueous ex-tract had a significant inhibitory activity against on the strains Staphylococ-cus aureus (8 mm), E. coli ATCC 10536 (8 mm) to a concentration of 100 mg / ml. The results for the antibacterial properties have shown that Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes and M. luteus.) were more sensitive than gram-negative (Pseudomonas aeruginosa, E. coli ATCC 10536) against from the action of phenolic compounds of the Ammi visnaga ethanolic extract.


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1094-1102
Author(s):  
UF Babaiwa ◽  
SO Eraga ◽  
EO Ojugo ◽  
O Erharuyi ◽  
JO Akerele

The study investigated the antimicrobial properties and the chemical composition of ethyl acetate extract of Dennettia tripetala (pepper fruit) seeds. Crude extract obtained by maceration of pulverized seeds in ethyl acetate was evaluated for antimicrobial activity against Escherichia coli, Staphylococcus aureus, Klebsiella aerogenes, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans and Aspergillus niger using standard agar-well diffusion method. GC-MS method was used to determine the chemical constituents of the extract. The extract was oily, yellowish-brown with a yield of 1.66 % and had activity against most of the test microorganisms, with inhibition zone diameters ranging between 10 to 25 mm. About 41 chemical constituents were present in the extract with formic acid methyl esters and fatty acids accounting for 57.23 and 18.49 % respectively. Ethyl acetate extract of Dennettia tripetala seeds possessed antimicrobial activity against bacteria but not fungi. The observed activity may be due to the presence of formic and fatty acid esters in the seed. The study further established a scientific proof for the traditional use of Dennettia tripetala seed extracts in treating microbial infections.  


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3577
Author(s):  
Yuri E. Sabutski ◽  
Ekaterina S. Menchinskaya ◽  
Ludmila S. Shevchenko ◽  
Ekaterina A. Chingizova ◽  
Artur R. Chingizov ◽  
...  

A series of new tetracyclic oxathiine-fused quinone-thioglycoside conjugates based on biologically active 1,4-naphthoquinones and 1-mercapto derivatives of per-O-acetyl d-glucose, d-galactose, d-xylose, and l-arabinose have been synthesized, characterized, and evaluated for their cytotoxic and antimicrobial activities. Six tetracyclic conjugates bearing a hydroxyl group in naphthoquinone core showed high cytotoxic activity with EC50 values in the range of 0.3 to 0.9 μM for various types of cancer and normal cells and no hemolytic activity up to 25 μM. The antimicrobial activity of conjugates was screened against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungus Candida albicans by the agar diffusion method. The most effective juglone conjugates with d-xylose or l-arabinose moiety and hydroxyl group at C-7 position of naphthoquinone core at concentration 10 µg/well showed antimicrobial activity comparable with antibiotics vancomicin and gentamicin against Gram-positive bacteria strains. In liquid media, juglone-arabinosidic tetracycles showed highest activity with MIC 6.25 µM. Thus, a positive effect of heterocyclization with mercaptosugars on cytotoxic and antimicrobial activity for group of 1,4-naphthoquinones was shown.


2019 ◽  
Vol 31 (4) ◽  
pp. 780-784
Author(s):  
P. Manimaran ◽  
S. Balasubramaniyan

The metal complexes of Fe(III) and Cu(II) were prepared by using 2,4-dinitrophenyl hydrazine (DNPH) and thiocyanate (SCN) with stirrer refluxed for about 6 h. The prepared Fe(III) and Cu(II) complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility and electronic spectrum, FT-IR spectral studies. The result suggested the octahedral geometry for Fe(III) and Cu(II) complexes. Powder X-ray diffraction indicate the crystalline nature of the metal complexes. The antimicrobial activities of the Fe(III) and Cu(II) complexes were tested with various micro organisms by disc diffusion method. The antimicrobial results indicate that the metal complexes are highly active with compared to the free ligand. The in vitro antioxidant activity of the free ligand and its metal complexes was assayed by radical scavenging activity (DPPH). The result proposed that Fe (III) and Cu(II) complexes exhibited strong antioxidant activity than that of the ligand.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


Author(s):  
PRIYANKA NIVRUTTI SHINDE ◽  
MANISH ASHOK RASKAR

Objective: The present study aims to synthesize and biological evaluation of Spiro-[Indole-Thiazolidine] derivatives as antimicrobial agents. Methods: The reaction sequence involves microwave-induced preparation of N-(2-oxo-1,2-dihydro-3’H-indol-3-ylidene)pyridine-4-carbohydrazide [3] from isoniazid [1] and isatin [2] followed by the cyclo condensation of [3] and mercaptoacetic acid under microwave condition to achieve the synthesis of spiro-[indole-thiazolidine] derivatives [4]. The resulting compounds were then allowed to react with various aromatic and heterocyclic aromatic aldehydes to afford arylidene derivatives [5a-l]. Result: Isoniazid (1) on condensation with isatin (2) in the presence of catalytic amount of glacial acetic acid furnished N-(2-oxo-1,2-dihydro-3’H-indol-3-ylidene) pyridine-4-carbohydrazide (3), which showed characteristic IR, absorption bands. Compound (3) underwent Spiro cyclization upon its reaction with mercaptoacetic acid in the presence of anhydrous ZnCl2 to form spiro-[indole-thiazolidine] compound (4). Compound (4) was then condensed with aromatic aldehydes to give arylidene derivatives (5a-l), which were characterized by IR and 1H NMR spectral data. Conclusion: All the synthesized compounds were screened for antimicrobial activity by the cup plate method. Most of the derivatives showed good antimicrobial activity against Gram-Positive and Gram-negative bacteria.


2009 ◽  
Vol 37 (05) ◽  
pp. 855-865 ◽  
Author(s):  
Supawadee Umthong ◽  
Songchan Puthong ◽  
Chanpen Chanchao

Propolis is one of the natural bee products which has long been used as a crude preventative and prophylactic medicine, and has been reported to possess antibacterial, antiviral, anti-inflammatory, antioxidative and anticancer properties. Propolis of the stingless bee, Trigona laeviceps, was extracted by water or methanol at 35% (w/v) yielding a crude water or a methanolic extract at 60 and 80 mg/ml, respectively, which is 17.1 and 22.9% (w/w) of the total propolis, respectively. The antimicrobial activity of both crude extracts was assayed on four selected pathogenic microbes by using the agar well diffusion method. The results suggested that both water and methanolic crude extracts have some antimicrobial activities, water extract has greater antimicrobial activity than methanolic extract. The relative order of sensitivity of the four microbes were, however, the same between the two extracts from the most to least sensitive, S. aureus > E. coli ≫ C. albicans ⋙ A. niger, with indeed no observed growth inhibition of A. niger at all. Antiproliferative and cytotoxic affects were tested on the colon carcinoma cell line, SW620, using the three parameters: (1) MTT assay; (2) cell morphology; and (3) the fragmentation of genomic DNA. The water extract of propolis showed a higher antiproliferative activity than that of methanolic extract to SW620 cells, additionally both appeared to cause cell death by necrosis.


Sign in / Sign up

Export Citation Format

Share Document