Synergistic effect of photodynamic therapy at 400 nm and doxycycline against Helicobacter pylori

2019 ◽  
Vol 14 (14) ◽  
pp. 1199-1205
Author(s):  
Ilaria Baccani ◽  
Paola Faraoni ◽  
Matilde Marini ◽  
Alessio Gnerucci ◽  
Barbara Orsini ◽  
...  

Aim: The objective of this study was to investigate the possible synergy between doxycycline and photodynamic therapy against Helicobacter pylori and to evaluate the possible side effects on adenocarcinoma gastric cells with and without protoporphyrin IX. Materials & methods: Three H. pylori strains (ATCC 700392, 43504 and 49503) were grown on solid medium either with, or without, doxycycline at subinhibitory concentrations, and irradiated for 10, 20 and 30 minutes with a 400 nm-peaked light source. The phototoxicity tests on AGS cells were evaluated by MTT assay. Results: The photodynamic therapy and doxycycline combination showed an antibacterial synergistic effect with no significant toxicities. Conclusion: The synergistic treatment could be considered as an interesting therapeutic option.


Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 801 ◽  
Author(s):  
Jimena Bravo ◽  
Paula Díaz ◽  
Alejandro H. Corvalán ◽  
Andrew F.G. Quest

The risk of developing gastric cancer is strongly linked to Helicobacter pylori (H. pylori) infection. Alternatively, autophagy is a conserved response that is important in cellular homeostasis and provides protection against bacterial infections. Although H. pylori is typically considered an extracellular bacterium, several reports indicate that it internalizes, possibly to avoid exposure to antibiotics. Mechanisms by which H. pylori manipulates host cell autophagic processes remain unclear and, importantly, none of the available studies consider a role for the secreted H. pylori virulence factor gamma-glutamyltranspeptidase (HpGGT) in this context. Here, we identify HpGGT as a novel autophagy inhibitor in gastric cells. Our experiments revealed that deletion of HpGGT increased autophagic flux following H. pylori infection of AGS and GES-1 gastric cells. In AGS cells, HpGGT disrupted the late stages of autophagy by preventing degradation in lysosomes without affecting lysosomal acidification. Specifically, HpGGT impaired autophagic flux by disrupting lysosomal membrane integrity, which leads to a decrease in lysosomal cathepsin B activity. Moreover, HpGGT was necessary for efficient internalization of the bacteria into gastric cells. This important role of HpGGT in internalization together with the ability to inhibit autophagy posits HpGGT as a key virulence factor in the development of gastric cancer.



2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liping Tao ◽  
Hai Zou ◽  
Zhimin Huang

Infection ofHelicobacter pylori (H. pylori)changed the proliferation of gastric epithelial cells and decreased the expression of heat shock protein 70 (HSP70). However, the effects ofH. pylorion the proliferation of gastric epithelial cells and the roles of HSP70 during the progress need further investigation.Objective.To investigate the effects ofHelicobacter pylori (H. pylori)and heat shock protein 70 (HSP70) on the proliferation of human gastric epithelial cells.Methods. H. pyloriand a human gastric epithelial cell line (AGS) were cocultured. The proliferation of AGS cells was quantitated by an MTT assay, and the expression of HSP70 in AGS cells was detected by Western blotting. HSP70 expression in AGS cells was silenced by small interfering RNA (siRNA) to investigate the role of HSP70. ThesiRNA-treated AGS cells were cocultured withH. pyloriand cell proliferation was measured by an MTT assay.Results.The proliferation of AGS cells was accelerated by coculturing withH. pylorifor 4 and 8 h, but was suppressed at 24 and 48 h. HSP70 expression was decreased in AGS cells infected byH. pylorifor 48 h. The proliferation in HSP70-silenced AGS cells was inhibited after coculturing withH. pylorifor 24 and 48 h compared with the control group.Conclusions.Coculture ofH. pylorialtered the proliferation of gastric epithelial cells and decreased HSP70 expression. HSP70 knockdown supplemented the inhibitory effect ofH. pylorion proliferation of epithelial cells. These results indicate that the effects ofH. pylorion the proliferation of gastric epithelial cells at least partially depend on the decreased expression of HSP70 induced by the bacterium.



2005 ◽  
Vol 12 (12) ◽  
pp. 1378-1386 ◽  
Author(s):  
Dionyssios N. Sgouras ◽  
Effrosini G. Panayotopoulou ◽  
Beatriz Martinez-Gonzalez ◽  
Kalliopi Petraki ◽  
Spyros Michopoulos ◽  
...  

ABSTRACT In clinical settings, Lactobacillus johnsonii La1 administration has been reported to have a favorable effect on Helicobacter pylori-associated gastritis, although the mechanism remains unclear. We administered, continuously through the water supply, live La1 to H. pylori-infected C57BL/6 mice and followed colonization, the development of H. pylori-associated gastritis in the lamina propria, and the levels of proinflammatory chemokines macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived cytokine (KC) in the serum and gastric tissue over a period of 3 months. We documented a significant attenuation in both lymphocytic (P = 0.038) and neutrophilic (P = 0.003) inflammatory infiltration in the lamina propria as well as in the circulating levels of anti-H. pylori immunoglobulin G antibodies (P = 0.003), although we did not observe a suppressive effect of La1 on H. pylori colonizing numbers. Other lactobacilli, such as L. amylovorus DCE 471 and L. acidophilus IBB 801, did not attenuate H. pylori-associated gastritis to the same extent. MIP-2 serum levels were distinctly reduced during the early stages of H. pylori infection in the La1-treated animals, as were gastric mucosal levels of MIP-2 and KC. Finally, we also observed a significant reduction (P = 0.046) in H. pylori-induced interleukin-8 secretion by human adenocarcinoma AGS cells in vitro in the presence of neutralized (pH 6.8) La1 spent culture supernatants, without concomitant loss of H. pylori viability. These observations suggest that during the early infection stages, administration of La1 can attenuate H. pylori-induced gastritis in vivo, possibly by reducing proinflammatory chemotactic signals responsible for the recruitment of lymphocytes and neutrophils in the lamina propria.



1999 ◽  
Vol 67 (8) ◽  
pp. 4237-4242 ◽  
Author(s):  
Nicola L. Jones ◽  
Andrew S. Day ◽  
Hilary A. Jennings ◽  
Philip M. Sherman

ABSTRACT The mechanisms involved in mediating the enhanced gastric epithelial cell apoptosis observed during infection withHelicobacter pylori in vivo are unknown. To determine whether H. pylori directly induces apoptosis of gastric epithelial cells in vitro and to define the role of the Fas-Fas ligand signal transduction cascade, human gastric epithelial cells were infected with H. pylori for up to 72 h under microaerophilic conditions. As assessed by both transmission electron microscopy and fluorescence microscopy, incubation with acagA-positive, cagE-positive, VacA-positive clinical H. pylori isolate stimulated an increase in apoptosis compared to the apoptosis of untreated AGS cells (16.0% ± 2.8% versus 5.9% ± 1.4%, P < 0.05) after 72 h. In contrast, apoptosis was not detected following infection withcagA-negative, cagE-negative, VacA-negative clinical isolates or a Campylobacter jejuni strain. In addition to stimulating apoptosis, infection with H. pylorienhanced Fas receptor expression in AGS cells to a degree comparable to that of treatment with a positive control, gamma interferon (12.5 ng/ml) (148% ± 24% and 167% ± 24% of control, respectively). The enhanced Fas receptor expression was associated with increased sensitivity to Fas-mediated cell death. Ligation of the Fas receptor with an agonistic monoclonal antibody resulted in an increase in apoptosis compared to the apoptosis of cells infected with the bacterium alone (38.5% ± 7.1% versus 16.0% ± 2.8%,P < 0.05). Incubation with neutralizing anti-Fas antibody did not prevent apoptosis of H. pylori-infected cells. Taken together, these findings demonstrate that the gastric pathogen H. pylori stimulates apoptosis of gastric epithelial cells in vitro in association with the enhanced expression of the Fas receptor. These data indicate a role for Fas-mediated signaling in the programmed cell death that occurs in response toH. pylori infection.



2019 ◽  
Vol 91 (8) ◽  
pp. 28-33 ◽  
Author(s):  
A M Veliev ◽  
I V Maev ◽  
D N Andreev ◽  
D T Dicheva ◽  
A V Zaborovskii ◽  
...  

Aim. Evaluation of the efficacy and safety of quadrupletherapy without bismuth (concomitant therapy) in patients with Helicobacter pylori - associated gastric ulcer and duodenal ulcer in the framework of a comparative research in the population of patients in Russia. Materials and methods. A prospective randomized trial was conducted, which included 210 patients with H. pylori - associated gastric/duodenal ulcer without complications. During the process of randomization, the patients were divided into three equal groups (n=70) depending on the prescribed 10-day scheme of eradication therapy (ET): the first group received the classic triple scheme (Omeprazole 20 mg 2 times a day, Amoxicillin 1000 mg 2 times a day and Clarithromycin 500 mg 2 times a day); the second group received quadruple therapy with bismuth drugs (Omeprazole 20 mg 2 times a day, Tetracycline 500 mg 4 times a day, Metronidazole 500 mg 3 times a day, Bismuth subcitrate potassium 120 mg 4 times a day); the third group received quadruple therapy without bismuth - concomitant therapy (Omeprazole 20 mg 2 times a day, Amoxicillin 1000 mg 2 times a day, Clarithromycin 500 mg 2 times a day and Metronidazole 500 mg 2 times a day). Diagnostics of H. pylori infection during screening and control of eradication was carried out via the fast urease biopsy sample test and urea breath test system. Control of the effectiveness of ET of the microorganism was carried out not earlier than 4 weeks after the end of the treatment. During the course of therapy, the frequency of development of side effects was assessed using a special questionnaire. Results and discussion. The effectiveness of triple therapy was 72.8% (ITT; 95% CI of 62.17-83.54) and 78,4% (PP; 95% CI 68.19-88.72); quadruple therapy with the preparation of bismuth - 80.0% (ITT; 95% CI 70.39-89.6) and 84,8% (PP; 95% CI, 75.96-93.73); quadruple therapy without bismuth - concomitant therapy - 84.2% (ITT; 95% CI 75.54-93.02) and 92.1% (PP; 95% CI 85.43-98.94). Quadruple therapy without bismuth was reliably more effective than the classical triple therapy in the PP selection (p=0.044883). Statistical analysis showed a tendency to poorer effectiveness of ET in patients who had previously used antibiotic therapy (OR 0.4317; 95% CI 0.1776-1.049), and in individuals with a rapid metabolism genotype - CYP2C19*1/*1 (OR 0.12; 95% CI 0.005848-2.4624). The frequency of development of side effects during the use of triple therapy was 18.5% (95% CI of 9.23-27.91), when using quadruple therapy with bismuth - 20.0% (95% CI 10.39-29.6), and with the use of quadruple therapy without bismuth - concomitant therapy - 24.2% (95% CI 13.98-34.58). Conclusion. This prospective randomized study demonstrated the high efficiency of quadruple therapy without bismuth (concomitant therapy) in the framework of eradication of H. pylori infection in Russia.



2018 ◽  
Vol 9 (5) ◽  
pp. 829-841 ◽  
Author(s):  
V. Garcia-Castillo ◽  
H. Zelaya ◽  
A. Ilabaca ◽  
M. Espinoza-Monje ◽  
R. Komatsu ◽  
...  

Helicobacter pylori infection is associated with important gastric pathologies. An aggressive proinflammatory immune response is generated in the gastric tissue infected with H. pylori, resulting in gastritis and a series of morphological changes that increase the susceptibility to cancer development. Probiotics could present an alternative solution to prevent or decrease H. pylori infection. Among them, the use of immunomodulatory lactic acid bacteria represents a promising option to reduce the severity of chronic inflammatory-mediated tissue damage and to improve protective immunity against H. pylori. We previously isolated Lactobacillus fermentum UCO-979C from human gastric tissue and demonstrated its capacity to reduce adhesion of H. pylori to human gastric epithelial cells (AGS cells). In this work, the ability of L. fermentum UCO-979C to modulate immune response in AGS cells and PMA phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 (human monocytic leukaemia) macrophages in response to H. pylori infection was evaluated. We demonstrated that the UCO-979C strain is able to differentially modulate the cytokine response of gastric epithelial cells and macrophages after H. pylori infection. Of note, L. fermentum UCO-979C was able to significantly reduce the production of inflammatory cytokines and chemokines in AGS and THP-1 cells as well as increase the levels of immunoregulatory cytokines, indicating a remarkable anti-inflammatory effect. These findings strongly support the probiotic potential of L. fermentum UCO-979C and provide evidence of its beneficial effects against the inflammatory damage induced by H. pylori infection. Although our findings should be proven in appropriate experiments in vivo, in both H. pylori infection animal models and human trials, the results of the present work provide a scientific rationale for the use of L. fermentum UCO-979C to prevent or reduce H. pylori-induced gastric inflammation in humans.



2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Chew Hui Kuean ◽  
Lee Boon Chieh ◽  
Vivian Lee Yean Yan ◽  
Chin Koh Lee ◽  
...  

The antibacterial activity of geraniol and its effect in combination with ampicillin, amoxicillin and clarithromycin against Staphylococcus aureus, Escherichia coli and Helicobacter pylori was tested. The minimum inhibitory concentrations (MICs) and combinatory effects of geraniol against the bacteria were assessed by using the modified broth microdilution and checkerboard assay, respectively. The combinatory effect is expressed as fractional inhibitory concentration index (FICI). The MIC of geraniol against S. aureus, E. coli and H. pylori was found to be 11200, 5600, and 7325 μg/mL, respectively. A significant synergistic effect was observed with geraniol and ampicillin against S. aureus with FICI in the range 0.19 to 0.32. Geraniol and ampicillin exhibited a partial synergistic effect against E. coli. A similar effect was observed with geraniol and clarithromycin against S. aureus. A partial synergistic effect was observed with clarithromycin and geraniol against H. pylori with the FICI value in the range 0.86 to 0.89. An additive effect was observed with geraniol and amoxicillin combination against H. pylori. However, the amoxicillin and clarithromycin dose was reduced by thirty-two fold when combined with geraniol against H. pylori. The anti- H. pylori effect of geraniol with clarithromycin and amoxicillin could be of potential interest in the treatment of H. pylori infection and associated ulcers in humans. Further, geraniol, in combination with other antibiotics, has substantial therapeutic potential against S. aureus and E.coli infection.



Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 637 ◽  
Author(s):  
Yongchae Park ◽  
Hanbit Lee ◽  
Joo Weon Lim ◽  
Hyeyoung Kim

Helicobacter pylori infection causes the hyper-proliferation of gastric epithelial cells that leads to the development of gastric cancer. Overexpression of tumor necrosis factor receptor associated factor (TRAF) is shown in gastric cancer cells. The dietary antioxidant β-carotene has been shown to counter hyper-proliferation in H. pylori-infected gastric epithelial cells. The present study was carried out to examine the β-carotene mechanism of action. We first showed that H. pylori infection decreases cellular IκBα levels while increasing cell viability, NADPH oxidase activity, reactive oxygen species production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and TRAF1 and TRAF2 gene expression, as well as protein–protein interaction in gastric epithelial AGS cells. We then demonstrated that pretreatment of cells with β-carotene significantly attenuates these effects. Our findings support the proposal that β-carotene has anti-cancer activity by reducing NADPH oxidase-mediated production of ROS, NF-κB activation and NF-κB-regulated TRAF1 and TRAF2 gene expression, and hyper-proliferation in AGS cells. We suggest that the consumption of β-carotene-enriched foods could decrease the incidence of H. pylori-associated gastric disorders.



Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1750 ◽  
Author(s):  
Hanbit Lee ◽  
Joo Weon Lim ◽  
Hyeyoung Kim

Helicobacter pylori (H. pylori) infection leads to the massive apoptosis of the gastric epithelial cells, causing gastric ulcers, gastritis, and gastric adenocarcinoma. Autophagy is a cellular recycling process that plays important roles in cell death decisions and can protect cells by preventing apoptosis. Upon the induction of autophagy, the level of the autophagy substrate p62 is reduced and the autophagy-related ratio of microtubule-associated proteins 1A/1B light chain 3B (LC3B)-II/LC3B-I is heightened. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are involved in the regulation of autophagy. Astaxanthin (AST) is a potent anti-oxidant that plays anti-inflammatory and anti-cancer roles in various cells. In the present study, we examined whether AST inhibits H. pylori-induced apoptosis through AMPK-mediated autophagy in the human gastric epithelial cell line AGS (adenocarcinoma gastric) in vitro. In this study, H. pylori induced apoptosis. Compound C, an AMPK inhibitor, enhanced the H. pylori-induced apoptosis of AGS cells. In contrast, metformin, an AMPK activator, suppressed H. pylori-induced apoptosis, showing that AMPK activation inhibits H. pylori-induced apoptosis. AST inhibited H. pylori-induced apoptosis by increasing the phosphorylation of AMPK and decreasing the phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt) and mTOR in H. pylori-stimulated cells. The number of LC3B puncta in H. pylori-stimulated cells increased with AST. These results suggest that AST suppresses the H. pylori-induced apoptosis of AGS cells by inducing autophagy through the activation of AMPK and the downregulation of its downstream target, mTOR. In conclusion, AST may inhibit gastric diseases associated with H. pylori infection by increasing autophagy through the activation of the AMPK pathway.



Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2524 ◽  
Author(s):  
Seoyeon Kyung ◽  
Joo Weon Lim ◽  
Hyeyoung Kim

Helicobacter pylori (H. pylori) causes gastritis and gastric cancers. Oxidative stress is involved in the pathological mechanism of H. pylori-induced gastritis and gastric cancer induction. Therefore, reducing oxidative stress may be beneficial for preventing the development of H. pylori-associated gastric diseases. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial regulator for the expression of antioxidant enzyme heme oxygenase-1 (HO-1), which protects cells from oxidative injury. α-Lipoic acid (α-LA), a naturally occurring dithiol, shows antioxidant and anti-inflammatory effects in various cells. In the present study, we examined the mechanism by which α-LA activates the Nrf2/HO-1 pathway, suppresses the production of pro-inflammatory cytokine interleukine-8 (IL-8), and reduces reactive oxygen species (ROS) in H. pylori-infected AGS cells. α-LA increased the level of phosphorylated and nuclear-translocated Nrf2 by decreasing the amount of Nrf2 sequestered in the cytoplasm by complex formation with Kelch-like ECH1-associated protein 1 (KEAP 1). By using exogenous inhibitors targeting Nrf2 and HO-1, we showed that up-regulation of activated Nrf2 and of HO-1 results in the α-LA-induced suppression of interleukin 8 (IL-8) and ROS. Consumption of α-LA-rich foods may prevent the development of H. pylori-associated gastric diseases by decreasing ROS-mediated IL-8 expression in gastric epithelial cells.



Sign in / Sign up

Export Citation Format

Share Document