Bactericidal efficacy of cold atmospheric plasma treatment against multidrug-resistant Pseudomonas aeruginosa

2020 ◽  
Vol 15 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Liyun Wang ◽  
Chuankai Xia ◽  
Yajun Guo ◽  
Chunjun Yang ◽  
Cheng Cheng ◽  
...  

Aim: The global of spread multidrug-resistant Pseudomonas aeruginosa has become a public health threat. Cold atmospheric plasma (CAP) is reported to have bactericidal efficacy; however, its effects on clinical super multidrug-resistant P. aeruginosa are unclear. The aim of this study was to investigate the bactericidal efficacy of CAP on a strain of super multidrug-resistant P. aeruginosa. Materials & methods: The effects of CAP treatments were evaluated using assays for the detection of growth, viability, metabolism, virulence factors and reactive oxygen species (ROS) levels. Results: Both CAP treatments dose-dependently inhibited cell viability and metabolic activity, and decreased the expression of several virulence factors. CAP treatment induced a significant increase in intracellular ROS levels, and ROS scavengers inhibited this effect. Conclusion: CAP treatment is a promising option for the clinical inhibition of multidrug-resistant P. aeruginosa, and the development of CAP technologies might be the key to solving the long-standing problem of drug-resistant bacteria.

2015 ◽  
Vol 13 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Georg Daeschlein ◽  
Matthias Napp ◽  
Stine Lutze ◽  
Andreas Arnold ◽  
Sebastian von Podewils ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 751
Author(s):  
Marwa Reda Bakkar ◽  
Ahmed Hassan Ibrahim Faraag ◽  
Elham R. S. Soliman ◽  
Manar S. Fouda ◽  
Amir Mahfouz Mokhtar Sarguos ◽  
...  

COVID-19 is a pandemic disease caused by the SARS-CoV-2, which continues to cause global health and economic problems since emerging in China in late 2019. Until now, there are no standard antiviral treatments. Thus, several strategies were adopted to minimize virus transmission, such as social distancing, face covering protection and hand hygiene. Rhamnolipids are glycolipids produced formally by Pseudomonas aeruginosa and as biosurfactants, they were shown to have broad antimicrobial activity. In this study, we investigated the antimicrobial activity of rhamnolipids against selected multidrug resistant bacteria and SARS-CoV-2. Rhamnolipids were produced by growing Pseudomonas aeruginosa strain LeS3 in a new medium formulated from chicken carcass soup. The isolated rhamnolipids were characterized for their molecular composition, formulated into nano-micelles, and the antibacterial activity of the nano-micelles was demonstrated in vitro against both Gram-negative and Gram-positive drug resistant bacteria. In silico studies docking rhamnolipids to structural and non-structural proteins of SARS-CoV-2 was also performed. We demonstrated the efficient and specific interaction of rhamnolipids with the active sites of these proteins. Additionally, the computational studies suggested that rhamnolipids have membrane permeability activity. Thus, the obtained results indicate that SARS-CoV-2 could be another target of rhamnolipids and could find utility in the fight against COVID-19, a future perspective to be considered.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Ana Mafalda Pinto ◽  
Alberta Faustino ◽  
Lorenzo M. Pastrana ◽  
Manuel Bañobre-López ◽  
Sanna Sillankorva

Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 871
Author(s):  
Mohammed F. Aldawsari ◽  
El-Sayed Khafagy ◽  
Ahmed Al Saqr ◽  
Ahmed Alalaiwe ◽  
Hisham A. Abbas ◽  
...  

The bacterial resistance development due to the incessant administration of antibiotics has led to difficulty in their treatment. Natural adjuvant compounds can be co-administered to hinder the pathogenesis of resistant bacteria. Sotolon is the prevailing aromatic compound that gives fenugreek its typical smell. In the current work, the anti-virulence activities of sotolon on Pseudomonas aeruginosa have been evaluated. P. aeruginosa has been treated with sotolon at sub-minimum inhibitory concentration (MIC), and production of biofilm and other virulence factors were assessed. Moreover, the anti-quorum sensing (QS) activity of sotolon was in-silico evaluated by evaluating the affinity of sotolon to bind to QS receptors, and the expression of QS genes was measured in the presence of sotolon sub-MIC. Furthermore, the sotolon in-vivo capability to protect mice against P. aeruginosa was assessed. Significantly, sotolon decreased the production of bacterial biofilm and virulence factors, the expression of QS genes, and protected mice from P. aeruginosa. Conclusively, the plant natural substance sotolon attenuated the pathogenicity of P. aeruginosa, locating it as a plausible potential therapeutic agent for the treatment of its infections. Sotolon can be used in the treatment of bacterial infections as an alternative or adjuvant to antibiotics to combat their high resistance to antibiotics.


2021 ◽  
Author(s):  
Yuan Liu ◽  
Ziwen Tong ◽  
Jingru Shi ◽  
Tian Deng ◽  
Ruichao Li ◽  
...  

Antimicrobial resistance has been a growing concern that gradually undermines our tradition treatment regimen. The fact that few antibacterial drugs with new scaffolds or targets have been approved in the past two decades aggravates this crisis. Repurposing previously approved drugs as potent antibiotic adjuvants offers a cost effective strategy to mitigate the development of resistance and tackle the increasing infections by multidrug resistant (MDR) bacteria. Herein, we found that benzydamine, a widely used non-steroidal anti-inflammatory drug in clinic, remarkably potentiated broad spectrum antibiotic tetracyclines activity against a panel of clinical important resistant pathogens, including MRSA, VRE, MCRPEC and tet (X)-positive Gram negative bacteria. Further mechanistically experiments showed that benzydamine dissipated membrane potential (ΔΨ) in both Gram positive and negative bacteria, which in turn upregulated the transmembrane proton gradient (ΔpH) and promoted the uptake of tetracyclines. Additionally, benzydamine exacerbated the oxidative stress by triggering the production of ROS and suppressing GAD system mediated oxidative defensive. This mode of action explains the great bactericidal activity of the doxycycline benzydamine combination against different metabolic states of bacteria including persister cells. As a proof of concept, the in vivo efficacy of this combination therapy was evidenced in multiple animal infection models. These findings revealed that benzydamine is a promising tetracycline antibiotics adjuvant and has the potential to address life threatening infections by MDR bacteria.


2021 ◽  
Author(s):  
Fernando Sanz-García ◽  
Sara Hernando-Amado ◽  
José Luis Martínez

ABSTRACTBACKGROUNDAntibiotic pollution of non-clinical environments might have a relevant impact on human health if resistant pathogens are selected. However, this potential risk is often overlooked, since drug concentrations in nature are usually below their minimal inhibitory concentrations (MICs). Albeit, antibiotic resistant bacteria can be selected even at sub-MIC concentrations, in a range that is dubbed the sub-MIC selective window, which depends on both the antibiotic and the pathogen.OBJECTIVESDetermine the sub-MIC selective windows of seven antibiotics of clinical relevance in the opportunistic pathogen Pseudomonas aeruginosa and evaluate the risk for selecting resistant mutants in nature, based on published data about the amount of antimicrobials detected in natural environments.METHODSWe conducted evolution experiments of P. aeruginosa PA14 in presence of sub-MIC concentrations of ceftazidime, amikacin, levofloxacin, ciprofloxacin, tetracycline, polymyxin B or imipenem, and measured drug susceptibility of the evolved populations.RESULTSSub-MIC selective window of quinolones was the largest, and the ones of polymyxin B and imipenem, the narrowest. Clinically relevant multidrug resistant (MDR) mutants (presenting MICs above EUCAST clinical breakpoints) arose within the sub-MIC selective windows of the majority of antibiotics tested, being these phenotypes probably mediated by efflux pumps′ activity.DISCUSSIONOur data show that the concentration of antibiotics reported in aquatic ecosystems -colonizable by P. aeruginosa- are, in occasions, higher than the ones able to select MDR mutants. This finding has implications for understanding the role of different ecosystems and conditions in the emergence of antibiotic resistance from a One-Health point of view. Further, it highlights the importance of delineating the sub-MIC selective windows for drugs of clinical value in pathogens with environmental niches, in order to evaluate the health risks due to antibiotic pollution of natural ecosystems and ultimately tackle antibiotic resistance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Valentin Duvauchelle ◽  
Chaimae Majdi ◽  
David Bénimélis ◽  
Catherine Dunyach-Remy ◽  
Patrick Meffre ◽  
...  

Infections caused by drug-resistant bacteria are a serious threat to human and global public health. Moreover, in recent years, very few antibiotics have been discovered and developed by pharmaceutical companies. Therefore, there is an urgent need to discover and develop new antibacterial agents to combat multidrug-resistant bacteria. In this study, two novel series of juglone/naphthazarin derivatives (43 compounds) were synthesized and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA, and clinical and reference Gram-negative bacteria E. coli and P. aeruginosa. These strains are of clinical importance because they belong to ESKAPE pathogens. Compounds 3al, 5ag, and 3bg showed promising activity against clinical and reference MSSA (MIC: 1–8 µg/ml) and good efficacy against clinical MRSA (MIC: 2–8 µg/ml) strains. 5am and 3bm demonstrated better activity on both MSSA (MIC: 0.5 µg/ml) and MRSA (MIC: 2 µg/ml) strains. Their MICs were similar to those of cloxacillin against clinical MRSA strains. The synergistic effects of active compounds 3al, 5ag, 5am, 3bg, and 3bm were evaluated with reference antibiotics, and it was found that the antibiotic combination with 3bm efficiently enhanced the antimicrobial activity. Compound 3bm was found to restore the sensitivity of clinical MRSA to cloxacillin and enhanced the antibacterial activity of vancomycin when they were added together. In the presence of 3bm, the MIC values of vancomycin and cloxacillin were lowered up to 1/16th of the original MIC with an FIC index of 0.313. Moreover, compounds 3al, 5ag, 5am, 3bg, and 3bm did not present hemolytic activity on sheep red blood cells. In silico prediction of ADME profile parameter results for 3bm is promising and encouraging for further development.


2019 ◽  
Vol 10 (9) ◽  
pp. 5759-5767
Author(s):  
Wan-Ting Lee ◽  
Boon-Khai Tan ◽  
Su-Anne Eng ◽  
Gan Chee Yuen ◽  
Kit Lam Chan ◽  
...  

A strategy to circumvent the problem of multidrug resistant pathogens is the discovery of anti-infectives targeting bacterial virulence or host immunity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Guangchao Qing ◽  
Xianxian Zhao ◽  
Ningqiang Gong ◽  
Jing Chen ◽  
Xianlei Li ◽  
...  

Abstract New strategies with high antimicrobial efficacy against multidrug-resistant bacteria are urgently desired. Herein, we describe a smart triple-functional nanostructure, namely TRIDENT (Thermo-Responsive-Inspired Drug-Delivery Nano-Transporter), for reliable bacterial eradication. The robust antibacterial effectiveness is attributed to the integrated fluorescence monitoring and synergistic chemo-photothermal killing. We notice that temperature rises generated by near-infrared irradiation did not only melt the nanotransporter via a phase change mechanism, but also irreversibly damaged bacterial membranes to facilitate imipenem permeation, thus interfering with cell wall biosynthesis and eventually leading to rapid bacterial death. Both in vitro and in vivo evidence demonstrate that even low doses of imipenem-encapsulated TRIDENT could eradicate clinical methicillin-resistant Staphylococcus aureus, whereas imipenem alone had limited effect. Due to rapid recovery of infected sites and good biosafety we envision a universal antimicrobial platform to fight against multidrug-resistant or extremely drug-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document