scholarly journals Harnessing immunological targets for COVID-19 immunotherapy

2021 ◽  
Author(s):  
Abhishesh Kumar Mehata ◽  
Matte Kasi Viswanadh ◽  
Vishnu Priya ◽  
Vikas ◽  
Madaswamy S Muthu

COVID-19 is an infectious and highly contagious disease caused by SARS-CoV-2. The immunotherapy strategy has a great potential to develop a permanent cure against COVID-19. Innate immune cells are in constant motion to scan molecular alteration to cells led by microbial infections throughout the body and helps in clearing invading viruses. Harnessing immunological targets for removing viral infection, generally based on the principle of enhancing the T-cell and protective immune responses. Currently-approved COVID-19 vaccines are mRNA encapsulated in liposomes that stimulate the host immune system to produce antibodies. Given the vital role of innate immunity, harnessing these immune responses opens up new hope for the generation of long-lasting and protective immunity against COVID-19.

2021 ◽  
Vol 22 (11) ◽  
pp. 5794
Author(s):  
Yu Sawada ◽  
Ayako Setoyama ◽  
Yumiko Sakuragi ◽  
Natsuko Saito-Sasaki ◽  
Haruna Yoshioka ◽  
...  

The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 546-549
Author(s):  
Shweta Dadarao Parwe ◽  
Milind Abhimanyu Nisargandha ◽  
Rishikesh Thakre

Hitherto, there is no proper line of treatment for the new (nCOVID19). The development of unique antiviral drugs has taken precedence. Therapeutic antibodies () will be a significantly beneficial agent against nCOVID-19. Here the host immune responses to new discussed in this review provide strategy and further treatment and understanding of clinical interventions against nCOVID-19. Plasma therapy uses the antibodies found in the blood of people recovering (or convalesced) from an infection to treat infected patients. When an infection occurs, the body begins producing proteins specially made to kill the germ, called antibodies. Those antibodies coat specifically plasma in the blood of survivors, the yellow transparent liquid blood portion for months or even years. research assesses plasma use from Convalescent patients of infected with nCOVID-19 as a possible preventive treatment. But it is not yet recommended as a line of treatment, and it is used as a clinical trial in the new in Indian population.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


2021 ◽  
Vol 22 (6) ◽  
pp. 3090
Author(s):  
Toshimasa Shimizu ◽  
Hideki Nakamura ◽  
Atsushi Kawakami

Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by chronic inflammation of the salivary and lacrimal glands and extra-glandular lesions. Adaptive immune response including T- and B-cell activation contributes to the development of SS. However, its pathogenesis has not yet been elucidated. In addition, several patients with SS present with the type I interferon (IFN) signature, which is the upregulation of the IFN-stimulated genes induced by type I IFN. Thus, innate immune responses including type I IFN activity are associated with SS pathogenesis. Recent studies have revealed the presence of activation pattern recognition receptors (PRRs) including Toll-like receptors, RNA sensor retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, and inflammasomes in infiltrating and epithelial cells of the salivary glands among patients with SS. In addition, the activation of PRRs via the downstream pathway such as the type I IFN signature and nuclear factor kappa B can directly cause organ inflammation, and it is correlated with the activation of adaptive immune responses. Therefore, this study assessed the role of the innate immune signal pathway in the development of inflammation and immune abnormalities in SS.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Ana A. Weil ◽  
Crystal N. Ellis ◽  
Meti D. Debela ◽  
Taufiqur R. Bhuiyan ◽  
Rasheduzzaman Rashu ◽  
...  

ABSTRACT Vibrio cholerae infection provides long-lasting protective immunity, while oral, inactivated cholera vaccines (OCV) result in more-limited protection. To identify characteristics of the innate immune response that may distinguish natural V. cholerae infection from OCV, we stimulated differentiated, macrophage-like THP-1 cells with live versus heat-inactivated V. cholerae with and without endogenous or exogenous cholera holotoxin (CT). Interleukin 23A gene (IL23A) expression was higher in cells exposed to live V. cholerae than in cells exposed to inactivated organisms (mean change, 38-fold; 95% confidence interval [95% CI], 4.0 to 42; P < 0.01). IL-23 secretion was also higher in cells exposed to live V. cholerae than in cells exposed to inactivated V. cholerae (mean change, 5.6-fold; 95% CI, 4.4 to 11; P < 0.001). This increase in IL-23 secretion was more marked than for other key innate immune cytokines (e.g., IL-1β and IL-6) and dependent on exposure to the combination of both live V. cholerae and CT. While IL-23 secretion was reduced following stimulation with either heat-inactivated wild-type V. cholerae or a live isogenic ctxAB mutant of V. cholerae, the addition of exogenous CT restored IL-23 secretion in combination with the live isogenic ctxAB mutant V. cholerae, but not when it was paired with stimulation by heat-inactivated V. cholerae. The posttranslational regulation of IL-23 under these conditions was dependent on the activity of the cysteine protease cathepsin B. In humans, IL-23 promotes the differentiation of Th17 cells to T follicular helper cells, which maintain and support long-term memory B cell generation after infection. Based on these findings, the stimulation of IL-23 production may be a determinant of protective immunity following V. cholerae infection. IMPORTANCE An episode of cholera provides better protection against reinfection than oral cholera vaccines, and the reasons for this are still under study. To better understand this, we compared the immune responses of human cells exposed to live Vibrio cholerae with those of cells exposed to heat-killed V. cholerae (similar to the contents of oral cholera vaccines). We also compared the effects of active cholera toxin and the inactive cholera toxin B subunit (which is included in some cholera vaccines). One key immune signaling molecule, IL-23, was uniquely produced in response to the combination of live bacteria and active cholera holotoxin. Stimulation with V. cholerae that did not produce the active toxin or was killed did not produce an IL-23 response. The stimulation of IL-23 production by cholera toxin-producing V. cholerae may be important in conferring long-term immunity after cholera.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaoyao Xia ◽  
Yikun Li ◽  
Xiaoyan Wu ◽  
Qingzhuo Zhang ◽  
Siyuan Chen ◽  
...  

Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.


2020 ◽  
Author(s):  
Xiao-Ting Zhang ◽  
Yong-Yao Yu ◽  
Hao-Yue Xu ◽  
Zhen-Yu Huang ◽  
Xia Liu ◽  
...  

AbstractThe skin of vertebrates is the outermost organ of the body and serves as the first line of defense against external aggressions. In contrast to mammalian skin, that of teleost fish lacks keratinization and has evolved to operate as a mucosal surface containing a skin-associated lymphoid tissue (SALT). Thus far, IgT representing the prevalent immunoglobulin (Ig) in SALT have only been reported upon infection with a parasite. However, very little is known about the types of B cells and Igs responding to bacterial infection in the teleost skin mucosa, as well as the inductive or effector role of the SALT in such responses. To address these questions, here we analyzed the immune response of trout skin upon infection with one of the most widespread fish skin bacterial pathogens, Flavobacterium columnare. This pathogen induced strong skin innate immune and inflammatory responses at the initial phases of infection. More critically, we found that the skin mucus of fish having survived the infection contained significant IgT-but not IgM- or IgD-specific titers against the bacteria. Moreover, we demonstrate the local proliferation and production of IgT+ B-cells and specific IgT titers respectively within the SALT upon bacterial infection. Thus, our findings represent the first demonstration that IgT is the main Ig isotype induced by the skin mucosa upon bacterial infection, and that because of the large surface of the skin, its SALT probably represents a prominent IgT inductive site in fish.


2020 ◽  
Author(s):  
Quentin Marquant ◽  
Daphné Laubreton ◽  
Carole Drajac ◽  
Elliot Mathieu ◽  
Edwige Bouguyon ◽  
...  

AbstractThe microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota can modulate reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific pathogen-free (SPF) and germ-free (GF) mice. Using SPF and GF mice intranasally exposed to lipopolysaccharide (LPS), a component of Gram-negative bacteria, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.Plain Language summaryMicrobiota represents an important partner of immunologic system at the interface between immune cells and epithelium. It is well known, notably in the gut, that the microbiota contributes in shaping efficient and safe defenses. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. In this study, we postulate that endogenous microbiota could dampen an excessive reactivity of pulmonary tissue to external stimuli. Thus, we sought to study the innate immune reaction switched on by viral or bacterial ligands in respiratory tract cells coming from mice with or without microbiota (germ-free condition, GF). Altogether, our results show a higher inflammatory reaction in GF condition. This study represents a step forward to better establish the link between the microbiota and the reactivity of the lung tissue. Not only these data demonstrate that the microbiota educates the pulmonary innate immune system, but also contributes the emerging concept of using respiratory commensal bacteria as potential next-generation probiotics to prevent susceptibility to respiratory diseases.


Sign in / Sign up

Export Citation Format

Share Document