Plasmodium falciparum infected humanized mice: a viable preclinical tool

Immunotherapy ◽  
2021 ◽  
Author(s):  
Rajeev K Tyagi

Summary Extensive research conducted on mouse–human chimeras has advanced our understanding on infectious diseases including the human–malaria parasite, Plasmodium falciparum ( P. falciparum). In vitro culture of asexual-blood stage infection of P. falciparum does not answer all questions related to parasitology, pharmacology and immunology, and complex life cycle, complicated genome, evolution of drug resistance and poor diagnosis makes it difficult to understand the patho-biology of parasite. Unavailability of effective-vaccine and issues of drug resistance advocates the use of human cell/tissues reconstituted immunodeficient-mice to P. falciparum. A number of immunodeficient-strains (TK/NOG, FRG/NOD, NOD/SCID/IL-2 receptor γ chain  null, NOD severe combined immunodeficiency gamma [NSG] mouse, NOD.Rag1−/− IL2Rγ−/− [NRG; DRAG]) are used for humanization purposes. Additionally, human-hematopoietic stem cells (CD34 reconstituted-NSG [human immune system]) mice support the engraftment and repopulation of immune effecters to study systemic inflammatory diseases.

2018 ◽  
Vol 2 (18) ◽  
pp. 2378-2388 ◽  
Author(s):  
Xiaoli Wang ◽  
Cing Siang Hu ◽  
Bruce Petersen ◽  
Jiajing Qiu ◽  
Fei Ye ◽  
...  

Abstract Clinical trials of imetelstat therapy have indicated that this telomerase inhibitor might have disease-modifying effects in a subset of patients with myelofibrosis (MF). The mechanism by which imetelstat induces such clinical responses has not been clearly elucidated. Using in vitro hematopoietic progenitor cell (HPC) assays and in vivo hematopoietic stem cell (HSC) assays, we examined the effects of imetelstat on primary normal and MF HSCs/HPCs. Treatment of CD34+ cells with imetelstat reduced the numbers of MF but not cord blood HPCs (colony-forming unit–granulocyte/macrophage, burst-forming unit–erythroid, and colony-forming unit–granulocyte/erythroid/macrophage/megakaryocyte) as well as MF but not normal CD34+ALDH+ cells irrespective of the patient’s mutational status. Moreover, imetelstat treatment resulted in depletion of mutated HPCs from JAK2V617F+ MF patients. Furthermore, treatment of immunodeficient mice that had been previously transplanted with MF splenic CD34+ cells with imetelstat at a dose of 15 mg/kg, 3 times per week for 4 weeks had a limited effect on the degree of chimerism achieved by normal severe combined immunodeficiency repopulating cells but resulted in a significant reduction in the degree of human MF cell chimerism as well as the proportion of mutated donor cells. These effects were sustained for at least 3 months after drug treatment was discontinued. These actions of imetelstat on MF HSCs/HPCs were associated with inhibition of telomerase activity and the induction of apoptosis. Our findings indicate that the effects of imetelstat therapy observed in MF patients are likely attributable to the greater sensitivity of imetelstat against MF as compared with normal HSCs/HPCs as well as the intensity of the imetelstat dose schedule.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashton C. Trotman-Grant ◽  
Mahmood Mohtashami ◽  
Joshua De Sousa Casal ◽  
Elisa C. Martinez ◽  
Dylan Lee ◽  
...  

AbstractT cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 549
Author(s):  
Laura Garcia-Perez ◽  
Anita Ordas ◽  
Kirsten Canté-Barrett ◽  
Pauline Meij ◽  
Karin Pike-Overzet ◽  
...  

Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).


2006 ◽  
Vol 50 (10) ◽  
pp. 3343-3349 ◽  
Author(s):  
Halima Kaddouri ◽  
Serge Nakache ◽  
Sandrine Houzé ◽  
France Mentré ◽  
Jacques Le Bras

ABSTRACT The extension of drug resistance among malaria-causing Plasmodium falciparum parasites in Africa necessitates implementation of new combined therapeutic strategies. Drug susceptibility phenotyping requires precise measurements. Until recently, schizont maturation and isotopic in vitro assays were the only methods available, but their use was limited by technical constraints. This explains the revived interest in the development of replacement methods, such as the Plasmodium lactate dehydrogenase (pLDH) immunodetection assay. We evaluated a commercially controlled pLDH enzyme-linked immunosorbent assay (ELISA; the ELISA-Malaria antigen test; DiaMed AG, Cressier s/Morat, Switzerland) to assess drug susceptibility in a standard in vitro assay using fairly basic laboratory equipment to study the in vitro resistance of malaria parasites to major antimalarials. Five Plasmodium falciparum clones and 121 clinical African isolates collected during 2003 and 2004 were studied by the pLDH ELISA and the [8-3H]hypoxanthine isotopic assay as a reference with four antimalarials. Nonlinear regression with a maximum effect model was used to estimate the 50% inhibitory concentration (IC50) and its confidence intervals. The two methods were observed to have similar reproducibilities, but the pLDH ELISA demonstrated a higher sensitivity. The high correlation (r = 0.98) and the high phenotypic agreement (κ = 0.88) between the two methods allowed comparison by determination of the IC50s. Recently collected Plasmodium falciparum African isolates were tested by pLDH ELISA and showed drug resistance or decreased susceptibilities of 62% to chloroquine and 11.5% to the active metabolite of amodiaquine. No decreased susceptibility to lumefantrine or the active metabolite of artemisinin was detected. The availability of this simple and highly sensitive pLDH immunodetection assay will provide an easier method for drug susceptibility testing of malaria parasites.


2020 ◽  
Author(s):  
Nonlawat Boonyalai ◽  
Brian A Vesely ◽  
Chatchadaporn Thamnurak ◽  
Chantida Praditpol ◽  
Watcharintorn Fagnark ◽  
...  

Abstract Background High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 ( pfpm2 ), exonuclease ( pfexo ) and chloroquine resistance transporter ( pfcrt ) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy.Methods To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined.Results The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovoquone-proguanil combinations revealed synergistic antimalarial activity.Conclusions Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.


2021 ◽  
Vol 5 (3) ◽  
pp. e202101237
Author(s):  
Kutub Ashraf ◽  
Shahin Tajeri ◽  
Christophe-Sébastien Arnold ◽  
Nadia Amanzougaghene ◽  
Jean-François Franetich ◽  
...  

Artemisinin-based combination therapies (ACT) are the frontline treatments against malaria worldwide. Recently the use of traditional infusions from Artemisia annua (from which artemisinin is obtained) or Artemisia afra (lacking artemisinin) has been controversially advocated. Such unregulated plant-based remedies are strongly discouraged as they might constitute sub-optimal therapies and promote drug resistance. Here, we conducted the first comparative study of the anti-malarial effects of both plant infusions in vitro against the asexual erythrocytic stages of Plasmodium falciparum and the pre-erythrocytic (i.e., liver) stages of various Plasmodium species. Low concentrations of either infusion accounted for significant inhibitory activities across every parasite species and stage studied. We show that these antiplasmodial effects were essentially artemisinin-independent and were additionally monitored by observations of the parasite apicoplast and mitochondrion. In particular, the infusions significantly incapacitated sporozoites, and for Plasmodium vivax and P. cynomolgi, disrupted the hypnozoites. This provides the first indication that compounds other than 8-aminoquinolines could be effective antimalarials against relapsing parasites. These observations advocate for further screening to uncover urgently needed novel antimalarial lead compounds.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3454-3457 ◽  
Author(s):  
Hanno Glimm ◽  
Patrick Tang ◽  
Ian Clark-Lewis ◽  
Christof von Kalle ◽  
Connie Eaves

Abstract Ex vivo proliferation of hematopoietic stem cells (HSCs) is important for cellular and gene therapy but is limited by the observation that HSCs do not engraft as they transit S/G2/M. Recently identified candidate inhibitors of human HSC cycling are transforming growth factor-β1(TGF-β1) and stroma-derived factor–1 (SDF-1). To determine the ability of these factors to alter the transplantability of human HSCs proliferating in vitro, lin− cord blood cells were first cultured for 96 hours in serum-free medium containing Flt3 ligand, Steel factor, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. These cells were then transferred to medium containing Steel factor and thrombopoietin with or without SDF-1 and/or TGF-β1 for 48 hours. Exposure to SDF-1 but not TGF-β1 significantly increased (> 2-fold) the recovery of HSCs able to repopulate nonobese diabetic/severe combined immunodeficiency mice. These results suggest new strategies for improving the engraftment activity of HSCs stimulated to proliferate ex vivo.


Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 3041-3051 ◽  
Author(s):  
JA Nolta ◽  
MB Hanley ◽  
DB Kohn

Abstract We have developed a novel cotransplantation system in which gene- transduced human CD34+ progenitor cells are transplanted into immunodeficient (bnx) mice together with primary human bone marrow (BM) stromal cells engineered to produce human interleukin-3 (IL-3). The IL- 3-secreting stroma produced sustained circulating levels of human IL-3 for at least 4 months in the mice. The IL-3-secreting stroma, but not control stroma, supported human hematopoiesis from the cotransplanted human BM CD34+ progenitors for up to 9 months, such that an average of 6% of the hematopoietic cells removed from the mice were of human origin (human CD45+). Human multilineage progenitors were readily detected as colony-forming units from the mouse marrow over this time period. Retroviral-mediated transfer of the neomycin phosphotransferase gene or a human glucocerebrosidase cDNA into the human CD34+ progenitor cells was performed in vitro before cotransplantation. Human multilineage progenitors were recovered from the marrow of the mice 4 to 9 months later and were shown to contain the transduced genes. Mature human blood cells marked by vector DNA circulated in the murine peripheral blood throughout this time period. This xenograft system will be useful in the study of gene transduction of human hematopoietic stem cells, by tracing the development of individually marked BM stem cells into mature blood cells of different lineages.


Sign in / Sign up

Export Citation Format

Share Document